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Executive summary

“ Memory manipulation is 
nothing new; most readers  
will be familiar with process 
injection, thread hijacking, 
process hollowing and so on.”

Endpoint Detection & Response systems (EDR), 
delivered by in-house teams or as part of a managed 
service, are a feature of modern intrusion detection 
and remediation operations. This success is a problem 
for attackers, and malicious actors have worked to 
find new ways to evade EDR detection capabilities. 
As with all arms races, these approaches to evading 
detection are creative and effective. One of the primary 
methods utilized in modern attack frameworks, hands-
on keyboard operations and even malicious binaries 
revolves around memory manipulation. 

Memory manipulation is nothing new; most readers 
will be familiar with process injection, thread hijacking, 
process hollowing and so on. That said, some recent 

tools/techniques are focused less on deployment and 
more on circumventing EDR telemetry acquisition 
techniques or alerting mechanisms. Elaborate 
hooking and exploitation of native functionality is now 
employed with impressive success rates. 

This paper is broken down into three parts; the first will 
explain some of the memory techniques readily used 
by attackers to avoid detection in today’s landscape, 
and will explain how they work and why they may 
be chosen. The second and third parts will focus on 
methods to detect the utilization of such covert mecha-
nisms, where telemetry for detection may be acquired, 
and some of the difficulties that may be encountered 
during the integration of these solutions.

EDR bypassing via memory manipulation techniques

4



As the name implies, MMTs are the operation of alter-
ing the live memory of a system to affect some form of 
redirection or alternative operation flow. 

As everything running on a system is loaded into live 
memory in order to execute (also known as volatile 
memory or RAM; not counting swap-space), all 
processes running commands are there in Opcode. 
Opcode is the abbreviation of “operation code”, which 
is another name for “instruction machine code”. Every 
function, comparison, reference, variable assignment 
and any other programmatical operation is conducted 
via Opcode, all of which are compiled from source 
code into program formats such as “.exe”. 

Attackers have become adept at reading these 
loaded Opcodes and changing them in live programs 
to perform unexpected and unwanted actions. An 
attacker only needs to gain access to the target 
process handle to insert or overwrite memory values in 

the live process. This is remote process editing and is 
normally done to inject malicious code into a legitimate 
process via functions such as “VirtualMemoryAlloc”. 
The utilization of these functions, and the remote 
modification of a process, is something that defensive 
teams have known about for a long time and are well 
versed in detecting.

It's inevitable that attackers have changed tactics 
as a result. Instead of manipulating the memory of 
remote processes, they are instead manipulating the 
memory of their own malicious payloads and agents. 
Remote process editing requires the acquisition of a 
process handle and then the execution of well-known 
functions as outlined above. Editing the memory 
belonging to the current or malicious process requires 
no permission, as the process has the authority to edit 
its own memory, including that of shared library files 
(DLLs). This capability has made it a preferred choice 
for malicious attackers over recent years. 

What is a memory  
manipulation technique (MMT)?
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All running processes have full authority 
to edit memory related to them without 
restriction; this includes modules loaded into 
the process. Modules, commonly known in 
Windows environments such as Dynamic 
Link Libraries, allow more than one process 
to access the same modules' shared memory 
and functions, which helps efficiency. To 
prevent memory consumption, the first 
process to call a DLL will load it into a shared 
memory space which can be accessed by 
any other process. As the DLL contents are 
designed for reuse, any subsequent process 
which tries to load the same DLL will instead 
be referred to the previously loaded instance 
of the DLL and use the functionality stored 
within the shared libraries memory space. 

This is important because of the way in 
which a lot of EDR telemetry collection 
mechanisms work, namely either via Event 
Tracing for Windows (ETW) or function 
hooking. ETW is a complex mechanism 
within the kernel level of the Windows 
Operating System (OS) - which we won’t 
dive deep into - but it’s important to know 
it is used to log system activity such as 

process execution, file access, network 
activity and many others. Function hooking 
is a mechanism by which EDR systems 
will set a hook on shared library functions 
for loaded processes. So, if a process calls 
that function, the hook will be triggered 
and the EDR agent will create appropriate 
telemetry. The hooking mechanism requires 
remote process writing operations which are 
conducted by a security vendor's signed/
trusted agent. 

In both the examples above, the telemetry 
acquisition relies on a process’ use of library 
functions to trigger either an ETW event to 
be generated, or an EDR hook to be entered. 
In both cases, the function paths required to 
reach to telemetry generation are dependent 
on Opcodes within the processes’ own 
memory space, which as stated before, the 
process has full access to. If you know the 
command flow, how to detect function hooks 
or even a lynchpin function in the publication 
process, you can theoretically edit the 
Opcodes to prevent the publication ever 
being reached. This is how EDR evasion 
MMT works. 

Manipulating your own  
memory to avoid detection
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Hooking is a technique that has been 
used by computer programmers for a 
very long time, for legitimate reasons. It’s 
also a long-standing malicious technique. 
In-Line hooking refers to the interception 
of calls to a specific function by altering 
the “in-line” Opcode of the function itself, 
essentially overwriting part of the desired 
functions Opcode in order to effect a redi-
rect. As mentioned previously, EDR and 
even some Anti-Malware (AM) systems 
use this technique to collect telemetry on 
the utilization of specific functions or even 
to alert if specific functions are utilized. 
Malicious actors instead use the technique 
to redirect command flow to malicious 
code sections, bypass telemetry publi-
cation or even simply to prevent function 
execution entirely. 

Let’s look at the simplest in-line hook avail-
able, the premature return hook. Almost all 
called functions in a DLL will have a “RET” 
or “return” Opcode in the functions memory 
section. When the “RET” command is hit, the 
control flow is returned to the calling function 
with the stack being cleaned up as part of the 
operation. This means that, unless there is 
return value checking, any function that runs 
to a “RET” command will return control to the 
calling function and the program will continue 
uninterrupted. Let’s say, as an attacker, you 
wanted to open a file which involves using 
system call, functions. By examining the call 
stack to the system call, you find that during 
the ETW publication process, the function 
“EtwEventWrite” is called every single time. 
Examining the functions contents in the 
loaded DLL, you see it looks like:

In-Line hooking module functions:  
an oldie but a goodie

Image 1. – ntdll.dll EtwEventWrite unaltered
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Following the “CALL” opcode, you know that this will 
result in an ETW event being published which logs the 
file opening event, and you want to prevent that from 
happening. So to prevent the “CALL” code from being 
reached, you simply replace the initial command with  
the value “C3”, which in Intel x64 Opcode means “RET”:

Now the attacker can perform any functions they want 
and no ETW events will be published as all control 
flow to the function “ETWEventWrite” will automati-
cally return with the desired value (in this case, 0 for 
SUCCESS), and the program will carry on believing 
the publication executed as intended. This is what is 
called a “general bypass hook” as it does not target 
one specific function but instead targets a “lynchpin 
function” which in turn prevents all general ETW event 
publication from succeeding with one edit. This can be 
done with as little code as:

Image 2. – ntdll.dll EtwEvent-
Write premature RET in-line 
hook injected

Image 3. – Source for in-line 
hook RET injection to 
EtwEventWrite
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Targeted hooking would instead focus on the file open 
function rather than at further down the call stack (such 
as at EtwEventWrite) and as such, would only affect 
that particular function. The reason why an attacker 
may choose a targeted solution over a general solution 
is to prevent detection by absence of telemetry. If every 
process on a system is generating at least some ETW 
events, monitoring for processes that are generating 
none is a trivial statistical analysis which would quickly 
highlight such hook functions. 

There is another solution; a hooked filter function. If 
the in-line hook redirects the system call to a program 
defined memory space rather than simply performing 
a “RET” command, an attacker can install an event 
filter which will allow through the majority of events for 
publication and only omit events which would contain 

otherwise anomalous entries. This could be filtered 
by checking the target file, a registry value, a Boolean 
flag or any other number of indicators designed by the 
malicious actor. In this way the program would gener-
ate normal traffic whilst carefully removing anything 
that an EDR solution or threat hunting team may deem 
suspicious. 

Another common reason for in-line hooking is simply 
to trigger malicious code to execute. Rather than 
executing a malicious memory section directly from 
the malicious process’ main memory space, by 
hooking a library function, you can instead hijack the 
command flow so that the malicious code is executed 
via the syscall command flow, preventing the need for 
creating a remote thread which is commonly detected. 

9
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How to monitor for and detect in-line module 
function hooking

First off, there is no efficient way to monitor for this 
dynamically as alteration of internal/process owned 
memory does not necessarily require a system call 
(“memcpy” for example) in order to implement the 
required alterations. As such, remote process memory 
access events would need to be monitored, but as 
these are extremely verbose (for legitimate reasons), 
this creates a resourcing issue. Therefore, for resource 
management reasons, this is typically done via 
sweeps of running processes on a regular basis. The 
obvious caveat to this is that short lived payloads 
may omit detection of such hooking depending on 
the polling mechanism employed (time offset of initial 
execution or global time delay), however this should 
be very effective for persistent payloads or malicious 
agents. 

To determine if a malicious alteration has taken 
place, a known “good copy” of the Opcode of the 
module must be available to compare for deviation. 
The “good copy” is taken from the module files found 
within the file system of the host OS before any in-line 
modification would have taken place. Thankfully, all 
Windows modules are signed and are available in the 
OS core directory. As such, it is possible to determine 
if malicious (unsigned) modules have been introduced 
as well as performing on-disk to live memory analysis. 
The same cannot be said for third-party modules and 
as such, monitoring can only compare what is avail-
able on the file system against what is in memory. This 
does not prevent malicious actors from directly altering 
the contents of third-party modules in order to affect 
malicious hooking (or more accurately patching). If 
reliable hashes are available for third-party modules, 
this type of monitoring would be trivial to introduce, but 
this is not readily supplied by all vendors. 
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In-line hooking of undocumented 
module functions: a clever deviation

This is a trickier version of module function in-line 
hooking to monitor, but requires the attacker to 
conduct additional preparation. Typically, an attacker 
will identify an exported function from a module such 
as “EtwEventWrite”, which is called as part of the 
publication command flow, and patch it as outlined 
in the previous section. This is simple because 
“EtwEventWrite” is documented, so its functionality 
can be determined. It is also an exported function, so 
is contained within the module's Export Table (ET), 
which is part of the module's Portable Executable 
(PE) Header. Being included in the ET means that the 
Relative Virtual Address (RVA) of the function within 
the modules memory space is specified in the ET in 
order to allow external processes to know where to 
find the function they want to use. Using the RVA (or 
offset), an attacker can find the Base Address (BA) 
of the module, which is the physical address at which 
the module was loaded into live memory, add the RVA 

and find the functions code in the modules memory 
space. An easier method is demonstrated in the code 
in image 3 by using the function “GetProcAddress” 
which references the ET of the loaded module “ntdll.
dll” to calculate and return the address of the desired 
function. Alternatively, this may be resolved within 
the loader of the process and be accessible from the 
Import Address Table (IAT) if a manual approach 
should to be avoided.

This same function resolution can be used from a 
defensive perspective. As all the exported functions 
can be located by examining the ET of a module's PE 
header and then using the Process Environment Block 
(PEB) of the target process to find the base address 
of all the modules loaded by the processes, scanning 
all, or a subset of the available functions, is trivial. 
The problem is that not all the functions in a module 
are exported, and as with almost all programs, some 

11
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functions are private internal functions. These internal 
functions can be used for a limitless number of purposes 
such as argument sanity checking, reformatting values, 
creating additional variables etc. But, as they are not 
exported, there is no way to know where they are located 
within a module's memory space without access to 
its associated Program Database (PDB), which is 
generated at compilation. So, if an attacker analyses the 
stack trace of a specific function they want to execute 
from the point it reaches out to something such as an 
ETW publication function, and find an internal function 
within the module which is called between executing 
the command and ETW publication, they can simply 
edit that function instead of the initially called exported 
function and still prevent ETW publication.

One such example was demonstrated by researcher 
Adam Chester in relation to DNS queries  and how by 
examining the call stack when the program hit the ETW 
publication function, you can identify internal functions 
within “dnsapi.dll” executed as part of the command 
flow. In this case, internal function (identified through 
PDB available on Microsoft Public Symbol Server2) 
“MCTemplateU0zqxqz” and “MCGenEventWrite”, are 
called after execution of the DNS query elements of 
“DnsQuery_A” function, but before reaching “EtwEv-
entWriteTransfer” in “ntdll.dll”. Chester provided the 
stack trace from his research which highlights the 
potential target, which can be seen in Image 4.

Image 4. – Stack 
trace showing 
internal functions 
before ETW 
publication 3

1 https://blog.xpnsec.com/evading-sysmon-dns-monitoring/
2 https://msdl.microsoft.com/download/symbols
3 https://blog.xpnsec.com/evading-sysmon-dns-monitoring/
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DnsQuery_A eventually calls the function “MCTemplateU0zqxqz”, 
which is used to create an ETW event type template for the specific 
action. This is then handed off via a call to “MCGenEventWrite” as 
shown in Image 5.

“McGenEventWrite” then creates the actual event object and 
calls function “EtwEventWriteTransfer” within module ntdll.dll to 
perform the actual event write action at the kernel level. This is 
demonstrated in Image 6.

Image 5. – MCTemplateU0zqxqz 
content, shows hand off to 
McGenEventWrite

Image 6. – McGenEventWrite 
handing complete template to 
ntdll.dll EtwEventWriteTransfer13
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In their example, by targeting “MCTemplateU0zqxqz” and 
using the standard “RET” command insert technique, 
Chester is able to completely prevent any logging of the 
“DnsQuery_A” function call activity. This means that, if this 
was employed in a malicious agent or malware, any DNS 
query could be executed safely in the knowledge that no 
ETW telemetry was being created due to the premature 
“RET” opcode in the command flow. Essentially, this is a 
more advanced and targeted method of standard in-line 
patching which requires private function enumeration and 
targeting on the part of the attacker in order to be effective.

We mentioned earlier that this was a trickier method to 
monitor for, due to the lack of entry for either “MCTem-
plateU0zqxqz” or “MCGenEventWrite” in the ET of the 
module “dnsapi.dll”. The reason this is trickier is that, 
without PDB files being readily available, there is no 
way to know where this function resides in the loaded 
module version with any reliability, and there is no way 
to find it dynamically without analyzing the call functions 
in the module on-the-fly, which is impractical. Therefore, 
we cannot specify this internal function to be monitored 
specifically for modification. So, effectively, we are left with 
no alternative other than to analyze the entire module's 
memory space for alterations.

Arguably, you could download PDB files as required from 
the Microsoft Public Symbol Server for encountered 
modules and then use the symbol references to determine 
the internal targeted function's location and size for analy-
sis. This would require one of two things; either all available 
PDB files installed alongside the scanning agent, or an 
internet connection which allows for dynamic download of 
the PDB’s as required. The former option will add bloat to 
the agent and will need constant updating as new versions 
of modules are routinely available, so a local DB may 
quickly become inefficient. The latter option would create 
unnecessary internet traffic and connections which can 
create event bloating or could be impractical on endpoints 
that may have specifically limited network access due to 
security requirements. Either option is impractical at scale. 

Image 7. – Private in-line 
hook with premature RET to 
prevent logging

14
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Problematic detection, too 
much or too inaccurate

In the example above, the problem is easily repre-
sented as being unable to find two specific internal 
functions as they are not in a module's ET. However, 
a hook within an internal function could be used for 
malicious redirect just as easily as function neutering 
purposes. With the latter, if this was all we were inter-
ested in, to have effective coverage, we would need 
to identify all potential command flows to the process 
being targeted for neutering. With the prior example, 
the interrupt was targeted at “DnsQuery_A”, but what 
if instead, it targeted “DnsQuery_W”? Without exam-
ination there is no way to be certain this would use the 
same McGen and McTemplate functions. Therefore, 
in order to have accurate coverage you either need 
to individually map every control flow (or stack trace) 
of all module functions of interest, or scan the entire 
module's memory.

This then leads to another issue. Although scanning 
an entire module's memory is possible, it does not 
allow for attribution of any detected alterations to a 
specific function. For example, an alteration detected 
at offset 0x1000 of a module does not correspond to 
any exported function in the ET. Although an alteration 
has taken place, without a PDB we cannot identify 
which function this is related to and as such cannot 
identify it as being part of any known command flow 
which may have been mapped out previously. This 
is important as due to variations in function locations 
between different versions of modules which may be 
encountered, a universal offset identifier is unreliable 
in practice. The image below shows some function 
alterations observed in different ntdll.dll versions.

Image 8. – ntdll.dll version 
alterations – Geoff Chappell 4

4 https://www.geoffchappell.com/studies/windows/
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Finally, there is the issue of double dependency within 
module structures. All modules have an ET in their 
PE header. However, they also may import functions 
from other modules which is specified in the Import 
Table (IT) of the PE header. It is possible that some 
functions in one module may in turn call functions 
from another module and so forth. Therefore, you will 
need to map all potential paths for function execution 
across double dependent modules in order to have 
effective coverage of internal functions which may be 
executed when passing between loaded modules. As 
any internal function hook can be deployed anywhere 
in the call stack, malicious actors can potentially map 
across multiple modules and input a malicious hook at 
any point to either return, redirect, or simply sidestep 
unwanted monitoring. 

Image 9. – Dependency tree 
for functions within dnsapi.
dll showing double linked 
dependencies

“As any internal function 
hook can be deployed 
anywhere in the call 
stack, malicious actors 
can potentially map 
across multiple modules 
and input a malicious 
hook at any point to 
either return, redirect, or 
simply sidestep unwanted 
monitoring.”
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As such, the only viable solution is to monitor for all 
modifications made to modules in live memory. We 
mentioned earlier how loaded modules are shared 
libraries that are used by multiple processes accessing 
the same memory location in order to prevent unnec-
essary memory usage. So, it would be fair to assume 
that alteration of a loaded module's memory space 
would affect all processes running on the system 
as they are all accessing the same module, but this 
is not the case. Instead, the OS recognizes that the 
memory of the module has been modified and makes 
a process specific copy of the memory page of where 
the alteration occurred. Subsequent actions from that 
process which conduct activity related to that memory 
section, are instead redirected to the process specific 
copy memory page for that function. 

Memory pages are the mechanism by which an 
OS separates memory into blocks in live memory, 
typically 4096 bytes on most modern OS, and is used 
for multiple advanced management mechanisms. In 
the case of a module modification, the entire page 
where the modification occurs, is copied to a process 
specific version (as explained above), called CopyOn-
Write(COW). This means that 4096 bytes is copied to 
an isolated memory page which the process thinks is 
still part of the module memory space. It enables the 
OS to allow processes to modify modules, which is a 
common occurrence for legitimate purposes, without 
requiring the entire module to be copied or reloaded to 
a process specific version, instead settling for just 4096 
bytes. Now that we have an understanding of how the 
OS handles such modifications to the memory, we are 
presented with two options to scan for deviations; scan 
every single byte, or check for COW pages. 

A byte-by-byte comparison will examine every byte 
of a module's live memory against that stored on the 
file systems “good” version, much like we would use 
for an exported function comparison. Doing this for 
every single module of a process and all its dependent 
modules, would require the comparison of a lot of 
memory which would then need to be repeated for 
every process due to the page extraction on modifica-
tion. By rough analysis, the average dual linked depen-
dent modules for programs is 695 modules (ranging 

between 583 and 804) on a test system. Multiply this 
by every process running on the system, and the 
resource requirements to conduct a full scan become 
unmanageable. As such, although this would work, it 
is impractical for such large scale comparison. 

An alternative solution is to scan for COW pages, 
which was brilliantly explained by Ollie Whitehouse at 
NCC Group with a released PoC made for public use5. 
We will provide a brief overview of this mechanism 
(which they have done excellent work in monitoring), 
but we strongly recommend examining the PoC and 
blog post6  to get full information. Essentially, it is 
important to know that when modules are loaded into 
memory to be shared between processes, they are 
assigned the memory protection set “MEM_MAPPED” 
or “MEM_IMAGE”. Typically when a page goes from 
shared to private (as in the case of COW), the protec-
tion set should get changed to “MEM_PRIVATE”, 
however in the case of modules the protection set 
remains at either “MEM_MAPPED” or “MEM_IMAGE”. 
But, more important, is an extended attribute of 
the page, which is found as part of its working set 
information, the “shared bit” (SB). If a COW page is 
created when a module is modified, the page will have 
its SB cleared (set to 0), which should not be the case 
in standard shared module memory space. As such, 
we are able to scan entire memory pages assigned to 
a processes module memory section and check only 
the extended attributes SB to see if a modification has 
taken place, instead of checking byte-by-byte which is 
a significant decrease in overhead.

As a side note, it is important to know that this analysis 
requires the use of “psapi.dll”, which is not available 
in C#. Our initial attempts to utilise this solution via 
C# meant a necessity to use a DLL bridge in order to 
accommodate the use of the “psapi.dll” functionality. 
This led to a heavy translation overhead and skewed 
the resource requirement analysis. Running this type 
of analysis from appropriate language bases (such as 
C++) will yield much faster results. 

Checking the extended attribute uses the command 
“QueryWorkingSetEx” from the mentioned module 
“psapi.dll”  to acquire the virtual attributes of the page 

5 https://www.geoffchappell.com/studies/windows/
6 https://research.nccgroup.com/wp-content/uploads/2022/11/Ollie-White-
house-Tales-of-Windows-detection-opportunities-for-an-implant-frame-
work-1-1.pdf
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7 https://dl.acm.org/doi/abs/10.1145/3359789.3359825

which contains the SB value. In testing, 
this proved to be very quick and a poten-
tially feasible workaround to the resource 
consumption issue. However, as this checks 
for deviations on an entire page, it is also 
inaccurate. A memory page can potentially 
contain multiple functions and the COW 
check does not provide accuracy on what 
has been altered on the relevant page. A 
subsequent byte-by-byte comparison will 
still be required to clarify what exact memory 
location has been modified, but in a much 
more targeted way.

This then comes back full circle to the original 
problem with internal functions. Even if you 
can detect at scale that modifications have 
taken place, how do you attribute them to 
an internal function that may be part of an 
exploitable command flow? The answer is 
that without a PDB (which we mentioned was 
unmanageable), you can’t. However, even 
if we did, there is no way to determine that 
this internal function is part of an exploitable 
command path without mapping all valuable 
offensive command flows across dependent 
modules. There is also the issue of False Posi-

tives (FPs) which are generated by the legiti-
mate modification of modules by processes. 

A primary example of this can be found in 
FireFox where multiple modifications of live 
modules occur legitimately as part of its oper-
ation. As a module scan would pick up every 
deviation on every page and (for resource 
purposes using COW) would be inaccurate, 
there is no way to determine what function 
the modification belongs to with any certainty. 
This is because module functions are not 
given a definitive size in the ET, only their 
location to be called from. As such, if an inter-
nal function followed an ET function, it would 
be easy to missattribute the modification with 
the ET function, which may seem legitimate. 
The problem of function boundaries, is an 
ongoing one which is being tackled from 
multiple angles. Some interesting research 
on this subject can found from back in 2019 
by Jim Alves-Foss and Jia Song at the 
University of Idaho7 which provides a detailed 
description of the problem. In their cases, 
they are analyzing a stripped binary, however 
without a PDB file, the internal functions are 
in essence also stripped. 

As a result of all these issues, either from an accuracy, resource or efficacy perspective, 
monitoring of internal function hooking is problematic, with no single solution that best fits all 
scenarios. This is a primary example of detection development issues where accuracy and 
resource requirements have to be balanced against one another in order to come up with a 
viable solution that best suits the majority of cases. The most effective solution is to use a 
network-enabled agent to download (and archive) PDB files as required for all module versions 
found for running processes, and then use the COW page search as a preliminary scan with 
byte-by-byte scanning as a definitive address identifier. However, this does not take into 
account network security requirements or estate restrictions which may impede the ability for 
PDB file acquisition which would then hinder accurate analysis. This is a judgement call.

Image 10. – FireFox legiti-
mate alterations to ntdll.dll 
skews results
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Legacy kernel patching for 
rootkit level stealth
The aforementioned is a prime example of why updating/
patching is so important in relation to security posture. 
In Windows versions prebuild 18950 due to a flaw in one 
of the kernel level logging functions, it was possible for 
malicious actors to implement a hook within the kernel to 
conduct malicious activity. In the case of ETW, bypassing 
this allowed all user level monitoring to be untouched, yet 
still no ETW events would be generated according to the 
malicious users’ objectives. 

The most effective tool for this is “Ghost-In-The-Logs” 
(GITL), developed by offensive security expert bats3c8. 
This tool is comprised using functionality from two 
other pre-existing projects which are fundamental in its 
capabilities. These are Kernel Driver Utility (KDU) by 
hfiref0x9  and InfinityHook by everdox10. By combining the 
capabilities of InfinityHook and KDU into one tool, GITL 
allows a script-kiddie level deployment for kernel hijack-
ing which is impressive, and (from a security perspective) 
extremely concerning.
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In order to understand kernel manipulation, the two 
primary components, KDU and InfinityHook, need to 
be explained. The first tool to be used is KDU which 
allows for an arbitrary write into kernel memory space 
by exploiting known vulnerable drivers on a system. 
It is worth noting that the vulnerabilities in the drivers 
used by KDU are still present, even in the latest 
versions of Windows, and therefore can be exploited, 
even with full patching. 

 How does Kernel memory manipulation work?

Once the malicious driver is loaded, it uses 
InfinityHook capabilities to search for the array of 
WMI_LOGGER_CONTEXT objects within the kernel 
space. A pointer to this array is known to exist just 
after the EtwpDebuggerData function which can be 
signature scanned for in module memory. Once the 
array has been acquired, it then scans for the entry 
which corresponds to the “circular kernel context 
logger” instance as it is typically always running; if it is 
not running, it is enabled. 

It is at this point the logging vulnerability is exploited; 
the vulnerability is the use of a pointer within the WMI_
LOGGER_CONTEXT object type. “GetCpuClock” is 
a pointer which typically points to one of three system 
time acquiring functions. This pointer is called every 
time an event is created in order to apply a timestamp. 
By using the RW capabilities of the driver a malicious 
actor can simply overwrite this pointer to install a mali-
cious hook so now on every syscall event generation, 
their hook will be hit before the syscall is executed. 

We will not go into the low-level technical explanation 
of how KDU works as that can be extremely lengthy 
and has been covered in numerous other articles. For 
this functionality, it is only important to understand 
that KDU is used to allow for primitive read & write 
functions into kernel memory space. Once these prim-
itives are acquired, a malicious kernel driver can be 
written to kernel memory and then bootstrapped to the 
vulnerable driver and loaded, which effectively gives a 
malicious actor kernel level access through their driver. 

Image 11. – Overview of KDU operation

Image 12. – Overview of 
InfinityHook hijack operation

8 https://github.com/bats3c/Ghost-In-The-Logs
9 https://github.com/hfiref0x/KDU
10 https://github.com/everdox/InfinityHook
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Within GITL, this hooking capability is used in order to prematurely exit the logging function and 
prevent any ETW logs from being generated. This is a generic ETW event dropping capability 
which works very well, it does open up the door to detection via event absence. However, due 
to its simplicity in use, it is an attractive option and could be used as a code base for other 
capabilities.

 A more complex method that InfinityHook has the capacity for is to instead only drop events for 
specific syscalls or ETW event types. This is done by walking up the stack from the hook to find 
KiSystemCall64 and acquiringing the SystemCallNumber and arguments. This works because 
prior to calling the logging function, the kernel resolves the syscall number/ID in a variable which 
allows for the hook to know what is being called and with what arguments. This would allow for 
targetted filtering, either at the kernel level from within the driver through pre-defined rules, or 
from userland by providing additional IOCTL flags, which can specify whether an event should,  
or should not, be logged on a call by call basis. 

Finally, the hook could instead be used to execute arbitrary syscalls which differ from those 
called within the user level. By stack walking to the defined syscall ID and arguments, the hook 
content could modify the contents of these variables before they are passed for execution to 
anything the malicious actor likes. As such, an innocent syscall from userland could be modi-
fied to conduct any syscall activity the attacker would like, with no trace log being generated 
and no user level activity which would correspond to it.

Image 13. – Overview of userland control over Kernel hook

Image 14. – Overview of Kernel hook code being used to execute arbitrary syscall
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Detecting Kernel level 
manipulation in, and 
prior, to build 18950

There are two main areas that can be monitored; the 
value of the GetCpuClock pointer within the kernel 
memory space, or the loading of known malicious 
drivers within the user space. 

Monitoring at a kernel level would require a monitoring 
kernel driver to be loaded. This is so it can monitor the 
memory of the WMIC_LOGGER_CONTEXT entries for 
alterations and then communicate when an alteration 
happens to a userland agent, which ideally would be 
event-driven rather than polled. Although this is possi-
ble, it can be extremely complex and has the potential 
to open security holes by introducing a new user to 
kernel space access to control a method to determine 
when to check the context objects. Additionally, as 
with all kernel side elements, it has the capacity to 
introduce instability into a system which can lead to 
undesirable events such as Blue Screen of Death 
(BSOD)/kernel panics. With the potential introduction 
of risks into vital systems by being monitored this way, 
this may not be the most efficient way of monitoring for 
such activity. 

Thankfully, due to the reliance on KDU in order 
to acquire the primitive read & write functions for 
malicious driver bootstrapping, we have a user space 
monitoring option. The drivers that are leveraged by 
KDU are well documented on regarding their vulner-
abilities with associated CVEs, they have never been 

fixed/patched/mitigated by the vendors. Although this 
seems like a massive oversight, due to the extreme 
rarity in which these drivers are loaded, it is not much 
of a problem from a monitoring perspective. One of 
the most readily available (and exploited) drivers is 
“NalDrv.sys”, originally named either “IQVW32.sys”, or 
“IQVW64.sys”, which is the “Intel Ethernet Diagnostics 
Driver”. However, the legitimate use and load of the 
driver, or associated service, is extremely rare despite 
it being present on almost all Windows systems 
natively. 

If KDU does not find “NalDrv.sys”, it will then scan the 
system in a linear list of known vulnerable drivers to 
see if they are available and load the first one that is 
available in order to allow kernel memory access. The 
list is:

•	 	NalDrv
•	 	RTCore64
•	 	Gdrv
•	 	ATSZIO
•	 	MsIo64
•	 	GLCKIo2
•	 	EneIo64
•	 	WinRing0x64
•	 	EneTechIo64
•	 	phymemx64
•	 	rtkio64
•	 	EneTechIo64
•	 	lha
•	 	AsIO2
•	 	DirectIo64

Therefore, monitoring systems for the presence of any 
of these drivers being active/loaded is typically a good 
indicator that KDU is being used, either maliciously or 
for development/research activity. In either case, an 
investigation into the nature of the tools use would be 
required due to the access it permits to the user. This 
can either be done via polling the system drivers or 
by monitoring TI ETW feeds, such as TI driver object 
creation and load events. 

“ The drivers that are  
leveraged by KDU are  
well documented on  
their vulnerabilities with 
associated CVEs, however 
they have never been fixed/
patched/mitigated by the 
vendors. ”

22

EDR bypassing via memory manipulation techniques



Is Kernel manipulation possible  
post 18950?

A kernel component has corrupted a critical data 
structure.The corruption could potentially allow a 
malicious user to gain control of this machine.

Closer examination shows this is because Microsoft changed the value 
type of GetCpuClock from a pointer to an integer. Therefore, when the 
hook pointer is attempted to be written to the GetCpuClock variable, it 
results in corrupting the structure, which in turn, triggers the BSOD. This 
also applies to other tools which use the vulnerable pointer to circumvent 
security measures such as ByePG (Bye Patch Guard).

However, that does not mean there are no other kernel memory manipula-
tion techniques being used in the wild, or will appear in the future, but only 
that this method has been closed. As KDU still works in current Windows 
versions there are still arbitrary kernel level access capabilities (even if 
they are easily monitored) which could be leveraged in currently unforsee-
able ways in the future. 

Using the methods in InfinityHook and by extension GITL, the kernel 
cannot be manipulated in the same way, post build 18950. This is because 
Microsoft specifically changed some of the kernel event management 
structure in order to prevent this type of exploitation from taking place. 
That means if you try to use the same exploit you end up with a “KERNEL_
SECURITY_CHECK_FAILURE” panic/BSOD event. The descriptor of the 
BSOD is:
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Heavens gate hooking 
AKA - how to be a syscall 
bouncer in x86

The change from 32 to 64 bit computing might feel like ancient history, but 
it remains relevant today. To continue using older programs and libraries, 
computers with a 64bit architecture need to emulate a 32bit system, and this 
requires the system to be able to switch CPU modes..

From a malicious standpoint, this type of memory manipulation occurs at the 
point between an x86 process (x32 program running on x64 architecture) and 
the native x64 kernel. As an overview, this works by targeting the functions 
which are involved in translating syscalls from the supported or emulated 
x32 program execution into a format or mode, which the native hardware 
is able to manage. For example, if a user wants to access a file from an x64 
process on an x64 architecture machine, a Syscall can be made through the 
appropriate libraries (or via direct Syscalls, but that’s a different subject) to 
the kernel. However, if you are running an x32 program through the Windows 
On Windows (WOW) architecture, then the x32 Syscall has to be translated/
switched to its x64 version before the kernel will be able to handle it. This 
translation or switch mechanism that is commonly referred to as “Heavens 
Gate”, is the gateway between the two architectures and handles the CPU 
mode switch. 

CHAPTER 2.
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How does Heavens 
Gate work?

The nature of how Heaven’s Gate works is complex 
at a lower level - so it will be explained at a moder-
ately high level. For the following explanation, we will 
assume the native architecture is x64, and that x86 
refers to WOW processes. If a x64 process wants to 
perform a syscall to the kernel, there are a number of 
native libraries which accommodate such functions, 
the primary of which is ntdll.dll. When a program needs 
to conduct some function, it will call the exported func-
tion of ntdll.dll, which in turn will perform the required 
syscall to the kernel and handles the results back to 
the calling process. However, you cannot perform a 
x32 syscall to a x64 kernel, therefore x86 processes 
cannot perform syscalls from the x32 user space 
created via WOW architecture. 

To get around this problem, x86 processes actually 
load both the x32 and x64 ntdll.dll instances. By doing 
this, the program has visibility to both the emulated 
x32 ntdll.dll functions and those of the native version, 
which can perform syscalls. 

Image 15. – WOW and native 
ntdll.dll version loaded into 
x86 process

“ The nature of how 
Heaven’s Gate works is 
complex at a lower level 
- so it will be explained 
at a moderately high 
level.”
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But, there is a caveat. The memory range of 
the x64 ntdll.dll instance, and its variables 
and arguments, are all of the wrong architec-
tural format. 

It’s possible for Physical-Address-Extension 
(PAE) x86 processes to access x64 memory 
regions in certain hardware configurations.  
In the case of the native ntdll.dll module 
within WOW, its address are in x64 format 
and not run through PAE. In order to operate 
an x64 syscall, the program needs to switch 
CPU modes from x32 to x64 while the 
syscall is performed from the x32 ntdll.dll 
to native version. This action is achieved 
through an assembly “FAR JMP” between 
code sections 0033(x64) and 0023 (x32) to 
switch between CPU/memory modes. This 
JMP is conducted within the wow64cpu.dll 
module, typically at offset 0x7009.

Image 16. – A hijacked 
HeavensGate (left) and the 
copied trampoline function 
location (right)
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A malicious user knows that all standard syscalls from an x86 process will have 
to pass through this far jump. By placing a hook on this gateway, the attacker 
effectively gains full control over all performed syscalls for that process from the 
WOW environment. As the far jump is only nine bytes, the hook can be altered, 
and the original replicated into a “trampoline” elsewhere with very little footprint. A 
trampoline is a section of code that is created solely to jump to another section of 
code, typically done in order to access a specific region, or return a control flow to 
a legitimate location specified dynamically to the trampolines code section. Once 
installed, syscalls can be neutered, manipulated, enumerated and perform any 
other activity an attacker requires.

How do we monitor for a sinful 
HeavensGate?

As with most hooking in native modules, the best way to determine if a hook has 
been deployed is to check for deviations from the known good values, just as with 
inline hooking detection. However, as the far jump operations has to go to a location 
relative to the native ntdll module  which is assigned dynamically, the gates nine byte 
jump code always differs between live memory and what is on disk. The in-line hook 
comparison method won’t work this time around.

Image 17. – Overview of 
HeavensGate Syscall hook

Image 19. – Live dynamic 
value of HeavensGate

Image 18. – On-disk value of 
HeavensGate
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Let’s work out how to determine the legitimate value of the gate to, then compare to 
the gate being used by every x86 process on the system. Another option discussed 
earlier, which may seem obvious, is to check for Copy-On-Write (COW) pages of the 
wow64cpu.dll module of process. Although it’s possible to fine-tune to only monitor 
the page range in which the gate code resides, the page contains other functions 
which, if manipulated, could perform other malicious actions. It’s unlikely, but possi-
ble, and as the gate code is only nine bytes, a bitwise comparison is much more 
accurate with very little resource consumption. As such, a targeted comparison has 
great value for monitoring this exploit over COW. 

The question remains: how do we determine a legitimate gate value that is dynam-
ically assigned at the initial load of wow64cpu.dll when the first x32 process is 
loaded via WOW? The easiest solution is to use a value reserved for WOW process-
es within the Thread Environment Block (TEB). TEB analysis conducted by Geoff 
Chappell[4], and catalogued in their very useful website, shows that within the TEB 
at offset 0xC0 for x86 processes is a variable, with value “WOW32Reserver”. In 
reality this reserved value is the “Fastsyscall” variable which is a pointer to the gate 
location of the current WOW environment used to accommodate syscall operations 
performed in-program. We can use this TEB value of any x86 process to find the 
gate memory location, and then by examining the content of a known good process, 
you can acquire a legitimate gate nine byte value. 

Image 20. – COW scanner for 
HeavensGate hook

Image 21. – TEB reserved 
FastSyscall value – Geoff 
Chappel [4]
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It is worth noting at this point that wow64cpu, along 
with other WOW specific modules are loaded at the 
initialization phase of an x86 process. Similar to 
ntdll.dll, such processes are almost certain to share 
the loaded module rather than load a new instance. 
However, additional checks can be made to ensure 
wow64cpu.dll module load addresses are consistent 
across all scanned processes, or the TEB FastSyscall 
value can be extracted from each process for analysis, 
but this can present access issues. 

Image 22. – Targetted 9 byte scan with 
Hook code content dump

Once the legitimate nine byte gate value is known, a 
comparison can be made for each process currently 
running, and any deviation flagged as being hooked. 
As an additional step, as the gate value is limited to 
nine bytes, the scanner can extract the malicious hook 
location and perform a dump of the hooked functions 
contents for analysis, or to be run through secondary 
detection engines.
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Using Vectored Exception 
Handlers to side-step EDR

Vectored Exception Handlers (VEH) are an unframed exception handler mechanism 
introduced in Windows XP. They allow developers to override Structured Exception 
Handlers (SEH) within their developed code at a high level. Due to this priority in 
exception handling, researchers and malicious actors have devised methods to 
utilize this capability for circumventing intended command flow to bypass monitoring, 
circumvent integrity checks, or even execute malicious code. 

CHAPTER 3.
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What is a SEH and VEH exactly?
The most basic form of exception handling is SEH, which is frame-based. This is what most developers know 
as a try/catch block at its lowest level, with the try block making up a frame. However, each function is a frame. 
A running process is made up of nested frames, with each step on the stack making up a frame all the way 
outwards until the global frame is reached. 

If you imagine in the code section above that the 
“PatchEtw” function throws an “InvalidOperationEx-
ception” error, the catch block will handle the exception 
appropriately. However, what happens if the function 
throws an exception of a different type? In that case, the 
exception gets passed to the encapsuling frame, namely 
that of function “test()”. Again, if there isn’t appropriate 
exception handling for the calling of the “test()”,  it is 
handled there. If not, it escalates to the frame/function 
which is called a “test()” and so forth. If the exception 
gets escalated to the global frame, it typically causes the 
program to crash due to an unhandled exception error. 

Now exception generation occurs at the CPU which is in 
turn handed off to the kernel. This won’t go over all the 
elements involved in exception generation within the 
kernel, but will cover the bits that are important here. The 
kernel then generates a number of objects which include 
the “EnvironmentContext” and “ExceptionRecord” 
objects. These are created within the “TrapFrame” in the 
kernel space and then handed back to the user space 
via the function “KiUserExceptionHandler” within ntdll.
dll via the EIP from the trap frame. 

Image 23. – SEH example 
within ETW in-line hook patch 
source
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Once control is back in the user space and the exception information is 
with “KiUserExceptionHandler”, it will then call “RtlDispatchException”, 
which uses the information from the EnvironmentContext and Excep-
tionRecord to identify which frame the exception happened within. The 
function then scans the designated frame for appropriate handlers and 
if not found, checks all containing frames outwards. This is the general 
concept of how SEH works.

Image 24. – Overview of SEH 
operation once handed back 
to user space
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So what about VEH? How is that different? The 
primary difference is that VEH does not take frames 
into account whatsoever. Whereas with SEH, it is 
all about the frames, and the containing frames, 
VEH is “frameless”. As such, it handles exceptions 
depending on the order in which they were added to 
the “Vectored_Handled_List”(VHL), which is stored 
within ntdll.dll module memory space. When VEH 
are defined, they are added to the VHL either at the 
beginning or the end of the list. When an exception 
is encountered, the OS will check the list in a linear 
sequence from first to last. 

The last thing to note is that VEH can have multiple 
exceptions defined within them as comparison state-
ments against the contents of the generated exception 
information. As such, one VEH entry can handle one 
or hundreds of event types with no limitations. 

Image 25. – Overview 
of VEH operation once 
handed back to User 
space

The VEH in the list which handles the exception that is 
encountered first, handles the exception regardless as 
to whether there is another VEH with a handler for that 
exception type or not. Significantly, this is done before 
SEH are checked and that SEH are only checked 
if no VEH entries for that exception type are found. 
Microsoft did this by altering the control flow within 
“KiUserExceptionHandler” by inserting a “RtlCall-
VectoredExceptionHandlers” function call just before 
“RtlDispatchException” is called, and then, depending 
on the result, skipping the second function altogether.
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VEH always cutting the line to misbehave
Because VEH entries will always take priority in exception handling, we will cover some of the ways in which 
malicious actors are abusing this capability. These range from preventing integrity checks by side stepping 
GuardPage(GP), performing force jumps to malicious code, silently bypassing internal functions, and finally, 
selectively avoiding EDR monitoring capabilities. 

GuardPage Integry bypassing

GP is a memory integrity check capability 
which allows for an exception to be thrown 
if a memory page is altered. By placing GP 
on a memory region, a program is able to 
detect malicious/unauthorized manipulation 
of its running memory, and behave in a 
reactive manner by handling the generated 
exception. 

As mentioned, GP relies on the concept that 
the exception “STATUS_GUARD_PAGE_
VIOLATION” is handled by the program to 
protect itself. However, since this works on 
exception handling, VEH can be used to 
circumvent the operation. An IT specialist 
going by the handle SH3N11  demonstrated 
hooking via this method by injecting into a 
program with GP enabled, and then installing 
a custom VEH entry for the GP violation 
exception. In their example, which applies 
to any GP bypass, their injected function 

defined a hooking function and its memory 
space, adding a malicious VEH and trigger-
ing the GP violation on a known protected 
memory region. 

The magic happens in the malicious VEH 
entry, which has two exception types defined 
for capture- “STATUS_GUARD_PAGE_
VIOLATION” and “STATUS_SINGLE_STEP”- 
the latter is typically used for debugging 
purposes, but can be forcefully triggered by 
modifying an ExceptionInfo object's Eflags 
object. When the GP violation occurs, the 
first handler is entered. This modifies the EIP/
RIP to the location of the hook code section. 
Following that, the Eflags is modified to value 
0x100. This flag value effectively tells the 
kernel this is a debugged instance to trigger 
a “STATUS_SINGLE_STEP” exception. 
Once this is set, the control of the program is 
returned to the injected process. 

Image 26. – GuardPage 
bypassing to run hooked 
code content as part of 
exception – SH3N12

11 https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/
12 https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/
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Force Jump

One of the quirks of VEH is that 
the function to add new VEH to the 
process “AddVectoredExceptionHan-
dler” within kernel32.dll only requires 
two arguments: a switch on whether to 
go at the front or end of the VHL, and a 
pointer to the defined VEH structure. 
If the VEH is added to the start of the 
VHL, the pointer will be called at the 
first exception handled, whether the 
pointers memory section has VEH 
handler code within it or not. 

If the pointer provided to “AddVectore-
dExceptionHandler” instead points to 
a memory section filled with shellcode, 
that shellcode will be executed at the 
first exception that is encountered. 
As long as the memory section ends 
with the return value of “EXCEPTION_
CONTINUE_SEARCH”, the OS will 
continue without issue, and continue 
searching the VEH list and SEH for an 
appropriate exception handler, and the 
shellcode would have been success-
fully executed. 

Image 27. – MSDN documentation 
for AddVetoredExceptionHandler13

Since the single step exception flag was set, we immediately generated an excep-
tion which corresponds to the second entry in the VEH. Once in this block, the 
attacker can now recall the original function with GP reset. This means the hook has 
now executed and the original function is now executing, or the attacker can perform 
any modifications they want to the protected memory section, and then re-assert 
the GP status of the page at the end before the exception is returned. In the latter 
example, the malicious VEH entry fully circumvents GP, as any alteration can be 
made, and then the protection status reasserted without any alerting or preventative 
action taking place, as the OS deems the exception as properly handled. 

13 https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/
nf-errhandlingapi-addvectoredexceptionhandler

35

EDR bypassing via memory manipulation techniques

https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-addvectoredexceptionhandler
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-addvectoredexceptionhandler


Silent bypassing

As pointed out in the GP bypassing mechanism, by inject-
ing a VEH into a process or as part of a malicious process, 
you can effectively neuter exception-based events as you 
see fit. If applied on a broader scale, this means that any 
function that is executed, as long as an exception can be 
forced as part of operation, an attacker can use VEH to 
omit any monitoring or subsequent activity. 

In this use-case it is assumed that an exception can be 
forced at a stage in the function that would still permit the 
primary purpose, but prevent the unwanted activity via 
exception generation. One method to do this would be to 
identify functions of use and determine the point at which 
monitoring events take place. By installing a command to 
trigger a divide by zero exception just before its operation, 
a VEH entry could be used to manipulate the control flow 
and prevent logging. Although it is possible, this would be 
a difficult use-case to implement.

EDR targetted bypass – Firewalker

FireWalker (FW) was a PoC tool developed by MDSec 
in 202014, which leveraged VEH in order to bypass 
certain EDR products, which then utilized hooked 
functions for telemetry acquisition. Essentially, this 
tool scans for hooks or pointer duplication in popularly 
monitored module functions of a running process, 
and if found, utilizes a similar bypass mechanism as 
outlined for GP. 

The tool scanning capabilities are fairly complex and 
was explained in detail within MDSecs own material, 
so we will not cover the internal scanner elements 
and scanning/duplication that are used to affect the 
step over via locating the hooked and circle back jmp 
commands. The key point is how FW prevents the hook 
from executing and allows for the bypass to take place. 
To that end, it relies on VEH. 

Image 28. – Overview of 
FireWalker operation

14 https://www.mdsec.co.uk/2020/08/
firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
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To effect the scanning capability, FW implements 
“EXCEPTION_SINGLE_STEP” (which is the same 
as “STATUS_SINGLE_STEP”) just before calling 
the desired function in order to effect a trap block. By 
manipulating the Eflags register (as with GP), they 
force the following command execution to create a 
single step exception, which is subsequently caught 
by their VEH entry. In the case of FW the exception 
then checks the next command (EIP + 1) for whether 
this matches to a known call or jmp opcode format. 
If it does, then the scan to resolve the hooks return 
address is made.  If not, the function continues unin-
terrupted. If the scan does find the hook code and the 
return address within the hook, it modifies the EIP to 
point to that location before returning from the excep-
tion, meaning that the hook is effectively stepped over. 

Detecting VEH usage

In order to detect the use of VEH and monitor its use 
and contents, there is a primary component that needs 
to be resolved: the VHL. The VHL contains the current 
list of VEH entries for a process, the contents of which 
can only be decoded with the process cookie for the 
target process. 

The most evident and prominent work on VEH 
enumeration was conducted by Dmitri Fourny15, 

who outlined where the VHL is stored and how it can 
be acquired. In addition, Ollie Whitehouse, over at 
the NCCGroup, has done some amazing work on 
optimizing Dmitri’s work for modern systems and 
ironing out some deviations that have occurred during 
subsequent OS revisions16. Ollie has developed a PoC 
scanner code as part of their DetectWindowsCopyOn-
WriteForAPI17 repository, which is what we based our 
testing and adaptations on. 

The VHL list is stored in the native ntdll.dll module 
memory instance and is referenced by the RtlDispat-
chException function during operation. In order to do 
this, the function obviously needs to know the location 
of the VHL. Dmitri found that the pointer for the VHL is 
stored as “LdrpVectoredHandlerList” and that it can 
be heuristically scanned within specific functions. By 
scanning the ntdll.dll for specific functions and then 
pattern matching the code sections, we can extract the 
VHL pointer. Three of the known functions to use the 
VHL pointer are “RtlpCallVectoredHandlers”, “RtlAd-
dVectoredExceptionHandler”, and “RtlRemoveVec-
toredExceptionHandler”, all of which you can assume 
directly interact with the VHL. The signature scanner in 
our method is “0x4c 0x8d 0x25”. Then for the pointer, 
copy ‘function address + signature offset +3’ for 4 
bytes, and you will have acquired the VHL. 

Image 29. –Acquisiton 
of VHL pointer 18

15 https://dimitrifourny.github.io/2020/06/11/dumping-veh-win10.html
16 https://research.nccgroup.com/2022/03/01/
detecting-anomalous-vectored-exception-handlers-on-windows/
17 https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/
master/d-vehimplant
18 https://research.nccgroup.com/2022/03/01/
detecting-anomalous-vectored-exception-handlers-on-windows/
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In order to decode the VEH entry, you 
will need to decode the pointer in the 
VHL. To do this, you use “NtQuery-
InformationProcess” to acquire the 
process cookie, and then perform 
“RotateRight64” operations on the 
pointer provided. After the rotation, 
it will return the memory address for 
where the VEH code has been stored, 
which is checked via the exception 
handler process. Once we have the 
handler code address, we can perform 
any number of analytics against the 
handler code, such as heuristics, 
handler location assessment, or even 
the exception type being used. 

As a basic example, checking the 
exception types being caught can 
allow for some quick wins in this 
area. By scanning the VEH block for 
exception handler byte sequences 
outlined in winnt.dll, we can isolate 
the exception handling blocks. Once 
in the block, we can then scan for 
comparison opcode sections and 
check their compared value for 
corresponding constant exception 
type values, as outlined in winnt.h. In 
this way, we can scan the VEH block 
and identify all the exception types the 
VEH has been crafted to handle, and 
perform program to exception type 
comparisons. 

Image 30. – VEH enumerator 
adapted for exception type 
scanning 
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For example, EXCEPTION_SINGLE_STEP is typically 
only used in debugging programs and platforms, and 
therefore its presence in arbitrary or sensitive process-
es can be an easy indicator of malicious VEH usage, 
such as in the case of FW. As all security bypass 
techniques rely on being able to trigger an immediate 
exception, they use the EXCEPTION_SINGLE_STEP, 
which is, otherwise rarely encountered outside of 
development environments, making it an easy detec-
tion criteria. Alternatively, exception types of STATUS_
INTEGER_DIVIDE_BY_ZERO are rare at a VEH level, 
and can be used to determine anomalous VEH entries, 
if not outright malicious. 

During experimentation using this detection criteria 
for exception types, only a small set of alerts were 
generated with a very small subset being false 
positives, which were easily attributed by the nature of 
the process (Visual Studio development environment 
debug flags). 

The problem with x86 and VEH

A problem alluded to by Ollie's work is that the 
scanner developed, only works on x64. The results 
of x86 processes always come out as UNKNOWN 
for the module resolution, and the VEH handle is 

unresolvable. After extensive analysis, the reason 
for this became clear; the VHL for the entire system 
including the WOW environment is stored in the native 
ntdll.dll module memory instance. Because of this, 
the memory address is in x64 format, which when 
attempted to be resolved against an x86 process, 
does not work. That process, can only work up to the 
x32 memory range. Yet the VEH for x86 does work 
during exception handling. 

How can this be possible? The reason is the exception 
is handled in the x64 CPU mode before being returned 
to the x32 CPU mode in WOW. Therefore, the physical 
x64 address that the VEH resolves to can be accessed 
by the exception handler in x64 mode with the correct 
process permissions, and then return the results back 
to the calling process in WOW. However, from a scanner 
perspective, this throws up a huge problem. A scanner 
running in WOW x86 cannot directly access the native 
ntdll.dll for the VHL list without switching to the x64 CPU 
mode. And a x64 scanner instance cannot use a WOW 
x86 process handle to resolve an x64 physical address 
without getting a memory access violation. 

Image 31. – Access violation 
error when resolving x86 
process VEH pointer
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The memory access violation occurs because the x64 memory 
region VAD (Virtual Address Descriptor) for a WOW x86 process 
is restricted by the kernel. As x32 processes have a limit of 
4GB of memory (with large address flag enabled) this is done 
to maintain stability in the system. As the x64 native system will 
assign the WOW x86 process, a virtual address range in the x64 
physical address capacity, wherever it best fits arbitrary memory 
access outside the defined virtual range, can be problematic. 
Therefore, the handle for the WOW x86 process will always result 
in an access violation when trying to resolve its own VEH handle 
stored in an x64 address in an access violation when trying to 
resolve its own VEH handle stored in an x64 address. 

This presents only two possible solutions. Either we 
manually switch between CPU modes within our 
scanner, or we resolve the physical address to a virtual 
address and resolve it via the WOW x86 process 
handle. Many researchers and attackers use manual 
CPU mode switching in order to achieve arbitrary 
x32 or x64 command execution on a system which 
supports both architectures (through WOW). This 
requires the assembly (ASM) of Heavens Gate (which 
we discussed earlier) to be available to the scanner 
code. By using a custom ASM gate, a program can 
jump between CPU modes arbitrarily. However, most 
research into this area highlights the potential insta-
bility in using such operations, as this is not intended 

Image 32. – VAD installed 
for Kernel restricted memory 
region in x64 range at 
0x7FFF0000

by the OS. As such, while manual CPU switching is 
an option, it may not be overly stable for monitoring 
solution deployment unless great care is taken. 

The alternative revolves around utilizing elements of 
the Memory Management Routine (MMR) component 
of the OS kernel. There is a function within the MMR 
called “MmGetVirtualForPhsyical”, which resolves a 
physical address to its virtual counterpart by tracing it 
back through the kernel-stored page tables. This would 
allow the virtual address assigned to the x64 physical 
address to be acquired (which should be in x32 
format), and used via the WOW x86 process handler 
for the VEH resolution.
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Another method devised by the hacker 
Xerox, is that if MMR access can be gained 
to get a snapshot of the page-tables, a 
user land version of the information can be 
updated using system event monitoring. As 
such, only one such access event would be 
required. But this, as a prime example, also 
presents a problem for creating access to the 
MMR in that it can open up several security 
concerns caused by such user to kernel-level 
interconnectivity. Access to the MMR is 
heavily restricted for good reason, as manip-
ulation of the page tables, or access to its 

Image 33. – MmGetVirtu-
alForPhysical MMR Kernel 
function details19

high-level functions, can be easily abused. 
Purposefully introducing such access may 
be an unacceptable risk. 

The conclusion is that monitoring WOW x86 
processes from an x64 scanner is not simple 
and the available solutions are all prone 
to instability or security issues. Although 
this type of monitoring is possible, it has 
to be determined by the developer of such 
a scanner whether the risks outweigh the 
monitoring potential.  

19 http://web.archive.org/web/20220926121708/https://www.codewarrior.cn/ntdoc/wrk/mm/MmGetVirtual-
ForPhysical.htm
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Summary

MMT’s are wide and varied in their complexity and in the mechanisms they choose 
to target in order to achieve their desired alterations. In all the techniques presented 
here, they can be used on both targeted/hijacked processes as well as malicious 
payloads. Used for either malicious operation or to disguise and evade detection for 
adjacent malicious operations, MMT’s are a tried-and-true mechanism to achieve 
these ends, and consequentially, be continuously analyzed. 

Security vendors and researchers use a wide range of methods to monitor and 
detect malicious operations. But as FW demonstrated, even those can be directly 
targeted by MMT’s. If not, MMT’s can be used to dodge and side-step otherwise 
revealing operations that attackers may use. Yet, in order to stay ahead of the defen-
sive operators, the development of new MMT’s must not stop either. As the security 
field has matured over the last decade, so has its capacity to proactively seek out 
new offensive techniques or vulnerabilities, and devise monitoring solutions or 
ethically disclose such weaknesses to the vendors. 

Therefore, although the use of MMT’s will in all likelihood be a never-ending arms 
race, the use of tried-and-true mechanisms like those described in this document 
are also likely to be around for a long time. With slight modifications or a razor-sharp 
targeted design, such mechanisms can still prove effective in certain situations. As 
such, defenders must be ever vigilant and roll with the punches.
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WithSecure™, formerly F-Secure Business, is cyber 
security’s reliable partner. IT service providers, 
MSSPs and businesses – along with the largest 
financial institutions, manufacturers, and thousands 
of the world’s most advanced communications 
and technology providers – trust us for outcome-
based cyber security that protects and enables 
their operations. Our AI-driven protection secures 
endpoints and cloud collaboration, and our intelligent 
detection and response are powered by experts 
who identify business risks by proactively hunting for 
threats and confronting live attacks. Our consultants 
partner with enterprises and tech challengers to 
build resilience through evidence-based security 
advice. With more than 30 years of experience in 
building technology that meets business objectives, 
we’ve built our portfolio to grow with our partners 
through flexible commercial models.

WithSecure™ Corporation was founded in 1988, and 
is listed on NASDAQ OMX Helsinki Ltd.
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