
EDR bypassing
via memory
manipulation
techniques
Written and researched by Connor Morley, WithSecure

Contents

Executive summary...4
Chapter 1: Manipulation and hooking basics ...5
What is a memory manipulation technique (MMT)?...5
Manipulating your own memory to avoid detection..6
In-Line hooking module functions: an oldie but a goodie..7
	 How to monitor for and detect in-line module function hooking..............................10
In-line hooking of undocumented module functions: a clever deviation................... 11
	 Problematic detection, too much or too inaccurate..15
Legacy kernel patching for rootkit level stealth... 19
	 How does Kernel memory manipulation work?..20
	 Detecting Kernel level manipulation in and prior to build 18950.............................22
	 Is Kernel manipulation possible post 18950?..23
Chapter 2... 24
Heavens gate hooking AKA - how to be a syscall bouncer in x86.............................. 24
	 How does Heavens Gate work?..25
	 How do we monitor for a sinful Heavens Gate?...27
Chapter 3... 30
Using Vectored Exception Handlers to side-step EDR... 30
	 What is a SEH and VEH exactly?..31
	 VEH always cutting the line to misbehave...34
		 PageGuard Integry bypassing...34
		 Force Jump...35
		 Silent bypassing..36
		 EDR targetted bypass – Firewalker...36
		 Detecting VEH usage..37
		 The problem with x86 and VEH...39
Summary... 42
Sources... 43

Executive summary

“ Memory manipulation is
nothing new; most readers
will be familiar with process
injection, thread hijacking,
process hollowing and so on.”

Endpoint Detection & Response systems (EDR),
delivered by in-house teams or as part of a managed
service, are a feature of modern intrusion detection
and remediation operations. This success is a problem
for attackers, and malicious actors have worked to
find new ways to evade EDR detection capabilities.
As with all arms races, these approaches to evading
detection are creative and effective. One of the primary
methods utilized in modern attack frameworks, hands-
on keyboard operations and even malicious binaries
revolves around memory manipulation.

Memory manipulation is nothing new; most readers
will be familiar with process injection, thread hijacking,
process hollowing and so on. That said, some recent

tools/techniques are focused less on deployment and
more on circumventing EDR telemetry acquisition
techniques or alerting mechanisms. Elaborate
hooking and exploitation of native functionality is now
employed with impressive success rates.

This paper is broken down into three parts; the first will
explain some of the memory techniques readily used
by attackers to avoid detection in today’s landscape,
and will explain how they work and why they may
be chosen. The second and third parts will focus on
methods to detect the utilization of such covert mecha-
nisms, where telemetry for detection may be acquired,
and some of the difficulties that may be encountered
during the integration of these solutions.

EDR bypassing via memory manipulation techniques

4

As the name implies, MMTs are the operation of alter-
ing the live memory of a system to affect some form of
redirection or alternative operation flow.

As everything running on a system is loaded into live
memory in order to execute (also known as volatile
memory or RAM; not counting swap-space), all
processes running commands are there in Opcode.
Opcode is the abbreviation of “operation code”, which
is another name for “instruction machine code”. Every
function, comparison, reference, variable assignment
and any other programmatical operation is conducted
via Opcode, all of which are compiled from source
code into program formats such as “.exe”.

Attackers have become adept at reading these
loaded Opcodes and changing them in live programs
to perform unexpected and unwanted actions. An
attacker only needs to gain access to the target
process handle to insert or overwrite memory values in

the live process. This is remote process editing and is
normally done to inject malicious code into a legitimate
process via functions such as “VirtualMemoryAlloc”.
The utilization of these functions, and the remote
modification of a process, is something that defensive
teams have known about for a long time and are well
versed in detecting.

It's inevitable that attackers have changed tactics
as a result. Instead of manipulating the memory of
remote processes, they are instead manipulating the
memory of their own malicious payloads and agents.
Remote process editing requires the acquisition of a
process handle and then the execution of well-known
functions as outlined above. Editing the memory
belonging to the current or malicious process requires
no permission, as the process has the authority to edit
its own memory, including that of shared library files
(DLLs). This capability has made it a preferred choice
for malicious attackers over recent years.

What is a memory
manipulation technique (MMT)?

EDR bypassing via memory manipulation techniques

CHAPTER 1:
Manipulation and hooking basics

5 5

All running processes have full authority
to edit memory related to them without
restriction; this includes modules loaded into
the process. Modules, commonly known in
Windows environments such as Dynamic
Link Libraries, allow more than one process
to access the same modules' shared memory
and functions, which helps efficiency. To
prevent memory consumption, the first
process to call a DLL will load it into a shared
memory space which can be accessed by
any other process. As the DLL contents are
designed for reuse, any subsequent process
which tries to load the same DLL will instead
be referred to the previously loaded instance
of the DLL and use the functionality stored
within the shared libraries memory space.

This is important because of the way in
which a lot of EDR telemetry collection
mechanisms work, namely either via Event
Tracing for Windows (ETW) or function
hooking. ETW is a complex mechanism
within the kernel level of the Windows
Operating System (OS) - which we won’t
dive deep into - but it’s important to know
it is used to log system activity such as

process execution, file access, network
activity and many others. Function hooking
is a mechanism by which EDR systems
will set a hook on shared library functions
for loaded processes. So, if a process calls
that function, the hook will be triggered
and the EDR agent will create appropriate
telemetry. The hooking mechanism requires
remote process writing operations which are
conducted by a security vendor's signed/
trusted agent.

In both the examples above, the telemetry
acquisition relies on a process’ use of library
functions to trigger either an ETW event to
be generated, or an EDR hook to be entered.
In both cases, the function paths required to
reach to telemetry generation are dependent
on Opcodes within the processes’ own
memory space, which as stated before, the
process has full access to. If you know the
command flow, how to detect function hooks
or even a lynchpin function in the publication
process, you can theoretically edit the
Opcodes to prevent the publication ever
being reached. This is how EDR evasion
MMT works.

Manipulating your own
memory to avoid detection

EDR bypassing via memory manipulation techniques

6

Hooking is a technique that has been
used by computer programmers for a
very long time, for legitimate reasons. It’s
also a long-standing malicious technique.
In-Line hooking refers to the interception
of calls to a specific function by altering
the “in-line” Opcode of the function itself,
essentially overwriting part of the desired
functions Opcode in order to effect a redi-
rect. As mentioned previously, EDR and
even some Anti-Malware (AM) systems
use this technique to collect telemetry on
the utilization of specific functions or even
to alert if specific functions are utilized.
Malicious actors instead use the technique
to redirect command flow to malicious
code sections, bypass telemetry publi-
cation or even simply to prevent function
execution entirely.

Let’s look at the simplest in-line hook avail-
able, the premature return hook. Almost all
called functions in a DLL will have a “RET”
or “return” Opcode in the functions memory
section. When the “RET” command is hit, the
control flow is returned to the calling function
with the stack being cleaned up as part of the
operation. This means that, unless there is
return value checking, any function that runs
to a “RET” command will return control to the
calling function and the program will continue
uninterrupted. Let’s say, as an attacker, you
wanted to open a file which involves using
system call, functions. By examining the call
stack to the system call, you find that during
the ETW publication process, the function
“EtwEventWrite” is called every single time.
Examining the functions contents in the
loaded DLL, you see it looks like:

In-Line hooking module functions:
an oldie but a goodie

Image 1. – ntdll.dll EtwEventWrite unaltered

7

EDR bypassing via memory manipulation techniques

7

Following the “CALL” opcode, you know that this will
result in an ETW event being published which logs the
file opening event, and you want to prevent that from
happening. So to prevent the “CALL” code from being
reached, you simply replace the initial command with
the value “C3”, which in Intel x64 Opcode means “RET”:

Now the attacker can perform any functions they want
and no ETW events will be published as all control
flow to the function “ETWEventWrite” will automati-
cally return with the desired value (in this case, 0 for
SUCCESS), and the program will carry on believing
the publication executed as intended. This is what is
called a “general bypass hook” as it does not target
one specific function but instead targets a “lynchpin
function” which in turn prevents all general ETW event
publication from succeeding with one edit. This can be
done with as little code as:

Image 2. – ntdll.dll EtwEvent-
Write premature RET in-line
hook injected

Image 3. – Source for in-line
hook RET injection to
EtwEventWrite

EDR bypassing via memory manipulation techniques

8

Targeted hooking would instead focus on the file open
function rather than at further down the call stack (such
as at EtwEventWrite) and as such, would only affect
that particular function. The reason why an attacker
may choose a targeted solution over a general solution
is to prevent detection by absence of telemetry. If every
process on a system is generating at least some ETW
events, monitoring for processes that are generating
none is a trivial statistical analysis which would quickly
highlight such hook functions.

There is another solution; a hooked filter function. If
the in-line hook redirects the system call to a program
defined memory space rather than simply performing
a “RET” command, an attacker can install an event
filter which will allow through the majority of events for
publication and only omit events which would contain

otherwise anomalous entries. This could be filtered
by checking the target file, a registry value, a Boolean
flag or any other number of indicators designed by the
malicious actor. In this way the program would gener-
ate normal traffic whilst carefully removing anything
that an EDR solution or threat hunting team may deem
suspicious.

Another common reason for in-line hooking is simply
to trigger malicious code to execute. Rather than
executing a malicious memory section directly from
the malicious process’ main memory space, by
hooking a library function, you can instead hijack the
command flow so that the malicious code is executed
via the syscall command flow, preventing the need for
creating a remote thread which is commonly detected.

9

EDR bypassing via memory manipulation techniques

How to monitor for and detect in-line module
function hooking

First off, there is no efficient way to monitor for this
dynamically as alteration of internal/process owned
memory does not necessarily require a system call
(“memcpy” for example) in order to implement the
required alterations. As such, remote process memory
access events would need to be monitored, but as
these are extremely verbose (for legitimate reasons),
this creates a resourcing issue. Therefore, for resource
management reasons, this is typically done via
sweeps of running processes on a regular basis. The
obvious caveat to this is that short lived payloads
may omit detection of such hooking depending on
the polling mechanism employed (time offset of initial
execution or global time delay), however this should
be very effective for persistent payloads or malicious
agents.

To determine if a malicious alteration has taken
place, a known “good copy” of the Opcode of the
module must be available to compare for deviation.
The “good copy” is taken from the module files found
within the file system of the host OS before any in-line
modification would have taken place. Thankfully, all
Windows modules are signed and are available in the
OS core directory. As such, it is possible to determine
if malicious (unsigned) modules have been introduced
as well as performing on-disk to live memory analysis.
The same cannot be said for third-party modules and
as such, monitoring can only compare what is avail-
able on the file system against what is in memory. This
does not prevent malicious actors from directly altering
the contents of third-party modules in order to affect
malicious hooking (or more accurately patching). If
reliable hashes are available for third-party modules,
this type of monitoring would be trivial to introduce, but
this is not readily supplied by all vendors.

EDR bypassing via memory manipulation techniques

10

In-line hooking of undocumented
module functions: a clever deviation

This is a trickier version of module function in-line
hooking to monitor, but requires the attacker to
conduct additional preparation. Typically, an attacker
will identify an exported function from a module such
as “EtwEventWrite”, which is called as part of the
publication command flow, and patch it as outlined
in the previous section. This is simple because
“EtwEventWrite” is documented, so its functionality
can be determined. It is also an exported function, so
is contained within the module's Export Table (ET),
which is part of the module's Portable Executable
(PE) Header. Being included in the ET means that the
Relative Virtual Address (RVA) of the function within
the modules memory space is specified in the ET in
order to allow external processes to know where to
find the function they want to use. Using the RVA (or
offset), an attacker can find the Base Address (BA)
of the module, which is the physical address at which
the module was loaded into live memory, add the RVA

and find the functions code in the modules memory
space. An easier method is demonstrated in the code
in image 3 by using the function “GetProcAddress”
which references the ET of the loaded module “ntdll.
dll” to calculate and return the address of the desired
function. Alternatively, this may be resolved within
the loader of the process and be accessible from the
Import Address Table (IAT) if a manual approach
should to be avoided.

This same function resolution can be used from a
defensive perspective. As all the exported functions
can be located by examining the ET of a module's PE
header and then using the Process Environment Block
(PEB) of the target process to find the base address
of all the modules loaded by the processes, scanning
all, or a subset of the available functions, is trivial.
The problem is that not all the functions in a module
are exported, and as with almost all programs, some

11

EDR bypassing via memory manipulation techniques

functions are private internal functions. These internal
functions can be used for a limitless number of purposes
such as argument sanity checking, reformatting values,
creating additional variables etc. But, as they are not
exported, there is no way to know where they are located
within a module's memory space without access to
its associated Program Database (PDB), which is
generated at compilation. So, if an attacker analyses the
stack trace of a specific function they want to execute
from the point it reaches out to something such as an
ETW publication function, and find an internal function
within the module which is called between executing
the command and ETW publication, they can simply
edit that function instead of the initially called exported
function and still prevent ETW publication.

One such example was demonstrated by researcher
Adam Chester in relation to DNS queries and how by
examining the call stack when the program hit the ETW
publication function, you can identify internal functions
within “dnsapi.dll” executed as part of the command
flow. In this case, internal function (identified through
PDB available on Microsoft Public Symbol Server2)
“MCTemplateU0zqxqz” and “MCGenEventWrite”, are
called after execution of the DNS query elements of
“DnsQuery_A” function, but before reaching “EtwEv-
entWriteTransfer” in “ntdll.dll”. Chester provided the
stack trace from his research which highlights the
potential target, which can be seen in Image 4.

Image 4. – Stack
trace showing
internal functions
before ETW
publication 3

1 https://blog.xpnsec.com/evading-sysmon-dns-monitoring/
2 https://msdl.microsoft.com/download/symbols
3 https://blog.xpnsec.com/evading-sysmon-dns-monitoring/

EDR bypassing via memory manipulation techniques

12

https://blog.xpnsec.com/evading-sysmon-dns-monitoring/
https://blog.xpnsec.com/evading-sysmon-dns-monitoring/

https://blog.xpnsec.com/evading-sysmon-dns-monitoring/

DnsQuery_A eventually calls the function “MCTemplateU0zqxqz”,
which is used to create an ETW event type template for the specific
action. This is then handed off via a call to “MCGenEventWrite” as
shown in Image 5.

“McGenEventWrite” then creates the actual event object and
calls function “EtwEventWriteTransfer” within module ntdll.dll to
perform the actual event write action at the kernel level. This is
demonstrated in Image 6.

Image 5. – MCTemplateU0zqxqz
content, shows hand off to
McGenEventWrite

Image 6. – McGenEventWrite
handing complete template to
ntdll.dll EtwEventWriteTransfer13

EDR bypassing via memory manipulation techniques

In their example, by targeting “MCTemplateU0zqxqz” and
using the standard “RET” command insert technique,
Chester is able to completely prevent any logging of the
“DnsQuery_A” function call activity. This means that, if this
was employed in a malicious agent or malware, any DNS
query could be executed safely in the knowledge that no
ETW telemetry was being created due to the premature
“RET” opcode in the command flow. Essentially, this is a
more advanced and targeted method of standard in-line
patching which requires private function enumeration and
targeting on the part of the attacker in order to be effective.

We mentioned earlier that this was a trickier method to
monitor for, due to the lack of entry for either “MCTem-
plateU0zqxqz” or “MCGenEventWrite” in the ET of the
module “dnsapi.dll”. The reason this is trickier is that,
without PDB files being readily available, there is no
way to know where this function resides in the loaded
module version with any reliability, and there is no way
to find it dynamically without analyzing the call functions
in the module on-the-fly, which is impractical. Therefore,
we cannot specify this internal function to be monitored
specifically for modification. So, effectively, we are left with
no alternative other than to analyze the entire module's
memory space for alterations.

Arguably, you could download PDB files as required from
the Microsoft Public Symbol Server for encountered
modules and then use the symbol references to determine
the internal targeted function's location and size for analy-
sis. This would require one of two things; either all available
PDB files installed alongside the scanning agent, or an
internet connection which allows for dynamic download of
the PDB’s as required. The former option will add bloat to
the agent and will need constant updating as new versions
of modules are routinely available, so a local DB may
quickly become inefficient. The latter option would create
unnecessary internet traffic and connections which can
create event bloating or could be impractical on endpoints
that may have specifically limited network access due to
security requirements. Either option is impractical at scale.

Image 7. – Private in-line
hook with premature RET to
prevent logging

14

EDR bypassing via memory manipulation techniques

Problematic detection, too
much or too inaccurate

In the example above, the problem is easily repre-
sented as being unable to find two specific internal
functions as they are not in a module's ET. However,
a hook within an internal function could be used for
malicious redirect just as easily as function neutering
purposes. With the latter, if this was all we were inter-
ested in, to have effective coverage, we would need
to identify all potential command flows to the process
being targeted for neutering. With the prior example,
the interrupt was targeted at “DnsQuery_A”, but what
if instead, it targeted “DnsQuery_W”? Without exam-
ination there is no way to be certain this would use the
same McGen and McTemplate functions. Therefore,
in order to have accurate coverage you either need
to individually map every control flow (or stack trace)
of all module functions of interest, or scan the entire
module's memory.

This then leads to another issue. Although scanning
an entire module's memory is possible, it does not
allow for attribution of any detected alterations to a
specific function. For example, an alteration detected
at offset 0x1000 of a module does not correspond to
any exported function in the ET. Although an alteration
has taken place, without a PDB we cannot identify
which function this is related to and as such cannot
identify it as being part of any known command flow
which may have been mapped out previously. This
is important as due to variations in function locations
between different versions of modules which may be
encountered, a universal offset identifier is unreliable
in practice. The image below shows some function
alterations observed in different ntdll.dll versions.

Image 8. – ntdll.dll version
alterations – Geoff Chappell 4

4 https://www.geoffchappell.com/studies/windows/

15

EDR bypassing via memory manipulation techniques

https://www.geoffchappell.com/studies/windows/

Finally, there is the issue of double dependency within
module structures. All modules have an ET in their
PE header. However, they also may import functions
from other modules which is specified in the Import
Table (IT) of the PE header. It is possible that some
functions in one module may in turn call functions
from another module and so forth. Therefore, you will
need to map all potential paths for function execution
across double dependent modules in order to have
effective coverage of internal functions which may be
executed when passing between loaded modules. As
any internal function hook can be deployed anywhere
in the call stack, malicious actors can potentially map
across multiple modules and input a malicious hook at
any point to either return, redirect, or simply sidestep
unwanted monitoring.

Image 9. – Dependency tree
for functions within dnsapi.
dll showing double linked
dependencies

“As any internal function
hook can be deployed
anywhere in the call
stack, malicious actors
can potentially map
across multiple modules
and input a malicious
hook at any point to
either return, redirect, or
simply sidestep unwanted
monitoring.”

16

EDR bypassing via memory manipulation techniques

As such, the only viable solution is to monitor for all
modifications made to modules in live memory. We
mentioned earlier how loaded modules are shared
libraries that are used by multiple processes accessing
the same memory location in order to prevent unnec-
essary memory usage. So, it would be fair to assume
that alteration of a loaded module's memory space
would affect all processes running on the system
as they are all accessing the same module, but this
is not the case. Instead, the OS recognizes that the
memory of the module has been modified and makes
a process specific copy of the memory page of where
the alteration occurred. Subsequent actions from that
process which conduct activity related to that memory
section, are instead redirected to the process specific
copy memory page for that function.

Memory pages are the mechanism by which an
OS separates memory into blocks in live memory,
typically 4096 bytes on most modern OS, and is used
for multiple advanced management mechanisms. In
the case of a module modification, the entire page
where the modification occurs, is copied to a process
specific version (as explained above), called CopyOn-
Write(COW). This means that 4096 bytes is copied to
an isolated memory page which the process thinks is
still part of the module memory space. It enables the
OS to allow processes to modify modules, which is a
common occurrence for legitimate purposes, without
requiring the entire module to be copied or reloaded to
a process specific version, instead settling for just 4096
bytes. Now that we have an understanding of how the
OS handles such modifications to the memory, we are
presented with two options to scan for deviations; scan
every single byte, or check for COW pages.

A byte-by-byte comparison will examine every byte
of a module's live memory against that stored on the
file systems “good” version, much like we would use
for an exported function comparison. Doing this for
every single module of a process and all its dependent
modules, would require the comparison of a lot of
memory which would then need to be repeated for
every process due to the page extraction on modifica-
tion. By rough analysis, the average dual linked depen-
dent modules for programs is 695 modules (ranging

between 583 and 804) on a test system. Multiply this
by every process running on the system, and the
resource requirements to conduct a full scan become
unmanageable. As such, although this would work, it
is impractical for such large scale comparison.

An alternative solution is to scan for COW pages,
which was brilliantly explained by Ollie Whitehouse at
NCC Group with a released PoC made for public use5.
We will provide a brief overview of this mechanism
(which they have done excellent work in monitoring),
but we strongly recommend examining the PoC and
blog post6 to get full information. Essentially, it is
important to know that when modules are loaded into
memory to be shared between processes, they are
assigned the memory protection set “MEM_MAPPED”
or “MEM_IMAGE”. Typically when a page goes from
shared to private (as in the case of COW), the protec-
tion set should get changed to “MEM_PRIVATE”,
however in the case of modules the protection set
remains at either “MEM_MAPPED” or “MEM_IMAGE”.
But, more important, is an extended attribute of
the page, which is found as part of its working set
information, the “shared bit” (SB). If a COW page is
created when a module is modified, the page will have
its SB cleared (set to 0), which should not be the case
in standard shared module memory space. As such,
we are able to scan entire memory pages assigned to
a processes module memory section and check only
the extended attributes SB to see if a modification has
taken place, instead of checking byte-by-byte which is
a significant decrease in overhead.

As a side note, it is important to know that this analysis
requires the use of “psapi.dll”, which is not available
in C#. Our initial attempts to utilise this solution via
C# meant a necessity to use a DLL bridge in order to
accommodate the use of the “psapi.dll” functionality.
This led to a heavy translation overhead and skewed
the resource requirement analysis. Running this type
of analysis from appropriate language bases (such as
C++) will yield much faster results.

Checking the extended attribute uses the command
“QueryWorkingSetEx” from the mentioned module
“psapi.dll” to acquire the virtual attributes of the page

5 https://www.geoffchappell.com/studies/windows/
6 https://research.nccgroup.com/wp-content/uploads/2022/11/Ollie-White-
house-Tales-of-Windows-detection-opportunities-for-an-implant-frame-
work-1-1.pdf

17

EDR bypassing via memory manipulation techniques

https://www.geoffchappell.com/studies/windows/
https://research.nccgroup.com/wp-content/uploads/2022/11/Ollie-Whitehouse-Tales-of-Windows-detection-opportunities-for-an-implant-framework-1-1.pdf
https://research.nccgroup.com/wp-content/uploads/2022/11/Ollie-Whitehouse-Tales-of-Windows-detection-opportunities-for-an-implant-framework-1-1.pdf
https://research.nccgroup.com/wp-content/uploads/2022/11/Ollie-Whitehouse-Tales-of-Windows-detection-opportunities-for-an-implant-framework-1-1.pdf

7 https://dl.acm.org/doi/abs/10.1145/3359789.3359825

which contains the SB value. In testing,
this proved to be very quick and a poten-
tially feasible workaround to the resource
consumption issue. However, as this checks
for deviations on an entire page, it is also
inaccurate. A memory page can potentially
contain multiple functions and the COW
check does not provide accuracy on what
has been altered on the relevant page. A
subsequent byte-by-byte comparison will
still be required to clarify what exact memory
location has been modified, but in a much
more targeted way.

This then comes back full circle to the original
problem with internal functions. Even if you
can detect at scale that modifications have
taken place, how do you attribute them to
an internal function that may be part of an
exploitable command flow? The answer is
that without a PDB (which we mentioned was
unmanageable), you can’t. However, even
if we did, there is no way to determine that
this internal function is part of an exploitable
command path without mapping all valuable
offensive command flows across dependent
modules. There is also the issue of False Posi-

tives (FPs) which are generated by the legiti-
mate modification of modules by processes.

A primary example of this can be found in
FireFox where multiple modifications of live
modules occur legitimately as part of its oper-
ation. As a module scan would pick up every
deviation on every page and (for resource
purposes using COW) would be inaccurate,
there is no way to determine what function
the modification belongs to with any certainty.
This is because module functions are not
given a definitive size in the ET, only their
location to be called from. As such, if an inter-
nal function followed an ET function, it would
be easy to missattribute the modification with
the ET function, which may seem legitimate.
The problem of function boundaries, is an
ongoing one which is being tackled from
multiple angles. Some interesting research
on this subject can found from back in 2019
by Jim Alves-Foss and Jia Song at the
University of Idaho7 which provides a detailed
description of the problem. In their cases,
they are analyzing a stripped binary, however
without a PDB file, the internal functions are
in essence also stripped.

As a result of all these issues, either from an accuracy, resource or efficacy perspective,
monitoring of internal function hooking is problematic, with no single solution that best fits all
scenarios. This is a primary example of detection development issues where accuracy and
resource requirements have to be balanced against one another in order to come up with a
viable solution that best suits the majority of cases. The most effective solution is to use a
network-enabled agent to download (and archive) PDB files as required for all module versions
found for running processes, and then use the COW page search as a preliminary scan with
byte-by-byte scanning as a definitive address identifier. However, this does not take into
account network security requirements or estate restrictions which may impede the ability for
PDB file acquisition which would then hinder accurate analysis. This is a judgement call.

Image 10. – FireFox legiti-
mate alterations to ntdll.dll
skews results

18

EDR bypassing via memory manipulation techniques

https://dl.acm.org/doi/abs/10.1145/3359789.3359825

Legacy kernel patching for
rootkit level stealth
The aforementioned is a prime example of why updating/
patching is so important in relation to security posture.
In Windows versions prebuild 18950 due to a flaw in one
of the kernel level logging functions, it was possible for
malicious actors to implement a hook within the kernel to
conduct malicious activity. In the case of ETW, bypassing
this allowed all user level monitoring to be untouched, yet
still no ETW events would be generated according to the
malicious users’ objectives.

The most effective tool for this is “Ghost-In-The-Logs”
(GITL), developed by offensive security expert bats3c8.
This tool is comprised using functionality from two
other pre-existing projects which are fundamental in its
capabilities. These are Kernel Driver Utility (KDU) by
hfiref0x9 and InfinityHook by everdox10. By combining the
capabilities of InfinityHook and KDU into one tool, GITL
allows a script-kiddie level deployment for kernel hijack-
ing which is impressive, and (from a security perspective)
extremely concerning.

19

EDR bypassing via memory manipulation techniques

In order to understand kernel manipulation, the two
primary components, KDU and InfinityHook, need to
be explained. The first tool to be used is KDU which
allows for an arbitrary write into kernel memory space
by exploiting known vulnerable drivers on a system.
It is worth noting that the vulnerabilities in the drivers
used by KDU are still present, even in the latest
versions of Windows, and therefore can be exploited,
even with full patching.

 How does Kernel memory manipulation work?

Once the malicious driver is loaded, it uses
InfinityHook capabilities to search for the array of
WMI_LOGGER_CONTEXT objects within the kernel
space. A pointer to this array is known to exist just
after the EtwpDebuggerData function which can be
signature scanned for in module memory. Once the
array has been acquired, it then scans for the entry
which corresponds to the “circular kernel context
logger” instance as it is typically always running; if it is
not running, it is enabled.

It is at this point the logging vulnerability is exploited;
the vulnerability is the use of a pointer within the WMI_
LOGGER_CONTEXT object type. “GetCpuClock” is
a pointer which typically points to one of three system
time acquiring functions. This pointer is called every
time an event is created in order to apply a timestamp.
By using the RW capabilities of the driver a malicious
actor can simply overwrite this pointer to install a mali-
cious hook so now on every syscall event generation,
their hook will be hit before the syscall is executed.

We will not go into the low-level technical explanation
of how KDU works as that can be extremely lengthy
and has been covered in numerous other articles. For
this functionality, it is only important to understand
that KDU is used to allow for primitive read & write
functions into kernel memory space. Once these prim-
itives are acquired, a malicious kernel driver can be
written to kernel memory and then bootstrapped to the
vulnerable driver and loaded, which effectively gives a
malicious actor kernel level access through their driver.

Image 11. – Overview of KDU operation

Image 12. – Overview of
InfinityHook hijack operation

8 https://github.com/bats3c/Ghost-In-The-Logs
9 https://github.com/hfiref0x/KDU
10 https://github.com/everdox/InfinityHook

20

EDR bypassing via memory manipulation techniques

https://github.com/bats3c/Ghost-In-The-Logs
https://github.com/hfiref0x/KDU
https://github.com/everdox/InfinityHook

Within GITL, this hooking capability is used in order to prematurely exit the logging function and
prevent any ETW logs from being generated. This is a generic ETW event dropping capability
which works very well, it does open up the door to detection via event absence. However, due
to its simplicity in use, it is an attractive option and could be used as a code base for other
capabilities.

 A more complex method that InfinityHook has the capacity for is to instead only drop events for
specific syscalls or ETW event types. This is done by walking up the stack from the hook to find
KiSystemCall64 and acquiringing the SystemCallNumber and arguments. This works because
prior to calling the logging function, the kernel resolves the syscall number/ID in a variable which
allows for the hook to know what is being called and with what arguments. This would allow for
targetted filtering, either at the kernel level from within the driver through pre-defined rules, or
from userland by providing additional IOCTL flags, which can specify whether an event should,
or should not, be logged on a call by call basis.

Finally, the hook could instead be used to execute arbitrary syscalls which differ from those
called within the user level. By stack walking to the defined syscall ID and arguments, the hook
content could modify the contents of these variables before they are passed for execution to
anything the malicious actor likes. As such, an innocent syscall from userland could be modi-
fied to conduct any syscall activity the attacker would like, with no trace log being generated
and no user level activity which would correspond to it.

Image 13. – Overview of userland control over Kernel hook

Image 14. – Overview of Kernel hook code being used to execute arbitrary syscall

21 21

EDR bypassing via memory manipulation techniques

Detecting Kernel level
manipulation in, and
prior, to build 18950

There are two main areas that can be monitored; the
value of the GetCpuClock pointer within the kernel
memory space, or the loading of known malicious
drivers within the user space.

Monitoring at a kernel level would require a monitoring
kernel driver to be loaded. This is so it can monitor the
memory of the WMIC_LOGGER_CONTEXT entries for
alterations and then communicate when an alteration
happens to a userland agent, which ideally would be
event-driven rather than polled. Although this is possi-
ble, it can be extremely complex and has the potential
to open security holes by introducing a new user to
kernel space access to control a method to determine
when to check the context objects. Additionally, as
with all kernel side elements, it has the capacity to
introduce instability into a system which can lead to
undesirable events such as Blue Screen of Death
(BSOD)/kernel panics. With the potential introduction
of risks into vital systems by being monitored this way,
this may not be the most efficient way of monitoring for
such activity.

Thankfully, due to the reliance on KDU in order
to acquire the primitive read & write functions for
malicious driver bootstrapping, we have a user space
monitoring option. The drivers that are leveraged by
KDU are well documented on regarding their vulner-
abilities with associated CVEs, they have never been

fixed/patched/mitigated by the vendors. Although this
seems like a massive oversight, due to the extreme
rarity in which these drivers are loaded, it is not much
of a problem from a monitoring perspective. One of
the most readily available (and exploited) drivers is
“NalDrv.sys”, originally named either “IQVW32.sys”, or
“IQVW64.sys”, which is the “Intel Ethernet Diagnostics
Driver”. However, the legitimate use and load of the
driver, or associated service, is extremely rare despite
it being present on almost all Windows systems
natively.

If KDU does not find “NalDrv.sys”, it will then scan the
system in a linear list of known vulnerable drivers to
see if they are available and load the first one that is
available in order to allow kernel memory access. The
list is:

•	 	NalDrv
•	 	RTCore64
•	 	Gdrv
•	 	ATSZIO
•	 	MsIo64
•	 	GLCKIo2
•	 	EneIo64
•	 	WinRing0x64
•	 	EneTechIo64
•	 	phymemx64
•	 	rtkio64
•	 	EneTechIo64
•	 	lha
•	 	AsIO2
•	 	DirectIo64

Therefore, monitoring systems for the presence of any
of these drivers being active/loaded is typically a good
indicator that KDU is being used, either maliciously or
for development/research activity. In either case, an
investigation into the nature of the tools use would be
required due to the access it permits to the user. This
can either be done via polling the system drivers or
by monitoring TI ETW feeds, such as TI driver object
creation and load events.

“ The drivers that are
leveraged by KDU are
well documented on
their vulnerabilities with
associated CVEs, however
they have never been fixed/
patched/mitigated by the
vendors. ”

22

EDR bypassing via memory manipulation techniques

Is Kernel manipulation possible
post 18950?

A kernel component has corrupted a critical data
structure.The corruption could potentially allow a
malicious user to gain control of this machine.

Closer examination shows this is because Microsoft changed the value
type of GetCpuClock from a pointer to an integer. Therefore, when the
hook pointer is attempted to be written to the GetCpuClock variable, it
results in corrupting the structure, which in turn, triggers the BSOD. This
also applies to other tools which use the vulnerable pointer to circumvent
security measures such as ByePG (Bye Patch Guard).

However, that does not mean there are no other kernel memory manipula-
tion techniques being used in the wild, or will appear in the future, but only
that this method has been closed. As KDU still works in current Windows
versions there are still arbitrary kernel level access capabilities (even if
they are easily monitored) which could be leveraged in currently unforsee-
able ways in the future.

Using the methods in InfinityHook and by extension GITL, the kernel
cannot be manipulated in the same way, post build 18950. This is because
Microsoft specifically changed some of the kernel event management
structure in order to prevent this type of exploitation from taking place.
That means if you try to use the same exploit you end up with a “KERNEL_
SECURITY_CHECK_FAILURE” panic/BSOD event. The descriptor of the
BSOD is:

23 23

EDR bypassing via memory manipulation techniques

Heavens gate hooking
AKA - how to be a syscall
bouncer in x86

The change from 32 to 64 bit computing might feel like ancient history, but
it remains relevant today. To continue using older programs and libraries,
computers with a 64bit architecture need to emulate a 32bit system, and this
requires the system to be able to switch CPU modes..

From a malicious standpoint, this type of memory manipulation occurs at the
point between an x86 process (x32 program running on x64 architecture) and
the native x64 kernel. As an overview, this works by targeting the functions
which are involved in translating syscalls from the supported or emulated
x32 program execution into a format or mode, which the native hardware
is able to manage. For example, if a user wants to access a file from an x64
process on an x64 architecture machine, a Syscall can be made through the
appropriate libraries (or via direct Syscalls, but that’s a different subject) to
the kernel. However, if you are running an x32 program through the Windows
On Windows (WOW) architecture, then the x32 Syscall has to be translated/
switched to its x64 version before the kernel will be able to handle it. This
translation or switch mechanism that is commonly referred to as “Heavens
Gate”, is the gateway between the two architectures and handles the CPU
mode switch.

CHAPTER 2.

24

EDR bypassing via memory manipulation techniques

How does Heavens
Gate work?

The nature of how Heaven’s Gate works is complex
at a lower level - so it will be explained at a moder-
ately high level. For the following explanation, we will
assume the native architecture is x64, and that x86
refers to WOW processes. If a x64 process wants to
perform a syscall to the kernel, there are a number of
native libraries which accommodate such functions,
the primary of which is ntdll.dll. When a program needs
to conduct some function, it will call the exported func-
tion of ntdll.dll, which in turn will perform the required
syscall to the kernel and handles the results back to
the calling process. However, you cannot perform a
x32 syscall to a x64 kernel, therefore x86 processes
cannot perform syscalls from the x32 user space
created via WOW architecture.

To get around this problem, x86 processes actually
load both the x32 and x64 ntdll.dll instances. By doing
this, the program has visibility to both the emulated
x32 ntdll.dll functions and those of the native version,
which can perform syscalls.

Image 15. – WOW and native
ntdll.dll version loaded into
x86 process

“ The nature of how
Heaven’s Gate works is
complex at a lower level
- so it will be explained
at a moderately high
level.”

25

EDR bypassing via memory manipulation techniques

But, there is a caveat. The memory range of
the x64 ntdll.dll instance, and its variables
and arguments, are all of the wrong architec-
tural format.

It’s possible for Physical-Address-Extension
(PAE) x86 processes to access x64 memory
regions in certain hardware configurations.
In the case of the native ntdll.dll module
within WOW, its address are in x64 format
and not run through PAE. In order to operate
an x64 syscall, the program needs to switch
CPU modes from x32 to x64 while the
syscall is performed from the x32 ntdll.dll
to native version. This action is achieved
through an assembly “FAR JMP” between
code sections 0033(x64) and 0023 (x32) to
switch between CPU/memory modes. This
JMP is conducted within the wow64cpu.dll
module, typically at offset 0x7009.

Image 16. – A hijacked
HeavensGate (left) and the
copied trampoline function
location (right)

26

EDR bypassing via memory manipulation techniques

A malicious user knows that all standard syscalls from an x86 process will have
to pass through this far jump. By placing a hook on this gateway, the attacker
effectively gains full control over all performed syscalls for that process from the
WOW environment. As the far jump is only nine bytes, the hook can be altered,
and the original replicated into a “trampoline” elsewhere with very little footprint. A
trampoline is a section of code that is created solely to jump to another section of
code, typically done in order to access a specific region, or return a control flow to
a legitimate location specified dynamically to the trampolines code section. Once
installed, syscalls can be neutered, manipulated, enumerated and perform any
other activity an attacker requires.

How do we monitor for a sinful
HeavensGate?

As with most hooking in native modules, the best way to determine if a hook has
been deployed is to check for deviations from the known good values, just as with
inline hooking detection. However, as the far jump operations has to go to a location
relative to the native ntdll module which is assigned dynamically, the gates nine byte
jump code always differs between live memory and what is on disk. The in-line hook
comparison method won’t work this time around.

Image 17. – Overview of
HeavensGate Syscall hook

Image 19. – Live dynamic
value of HeavensGate

Image 18. – On-disk value of
HeavensGate

27

EDR bypassing via memory manipulation techniques

Let’s work out how to determine the legitimate value of the gate to, then compare to
the gate being used by every x86 process on the system. Another option discussed
earlier, which may seem obvious, is to check for Copy-On-Write (COW) pages of the
wow64cpu.dll module of process. Although it’s possible to fine-tune to only monitor
the page range in which the gate code resides, the page contains other functions
which, if manipulated, could perform other malicious actions. It’s unlikely, but possi-
ble, and as the gate code is only nine bytes, a bitwise comparison is much more
accurate with very little resource consumption. As such, a targeted comparison has
great value for monitoring this exploit over COW.

The question remains: how do we determine a legitimate gate value that is dynam-
ically assigned at the initial load of wow64cpu.dll when the first x32 process is
loaded via WOW? The easiest solution is to use a value reserved for WOW process-
es within the Thread Environment Block (TEB). TEB analysis conducted by Geoff
Chappell[4], and catalogued in their very useful website, shows that within the TEB
at offset 0xC0 for x86 processes is a variable, with value “WOW32Reserver”. In
reality this reserved value is the “Fastsyscall” variable which is a pointer to the gate
location of the current WOW environment used to accommodate syscall operations
performed in-program. We can use this TEB value of any x86 process to find the
gate memory location, and then by examining the content of a known good process,
you can acquire a legitimate gate nine byte value.

Image 20. – COW scanner for
HeavensGate hook

Image 21. – TEB reserved
FastSyscall value – Geoff
Chappel [4]

28

EDR bypassing via memory manipulation techniques

It is worth noting at this point that wow64cpu, along
with other WOW specific modules are loaded at the
initialization phase of an x86 process. Similar to
ntdll.dll, such processes are almost certain to share
the loaded module rather than load a new instance.
However, additional checks can be made to ensure
wow64cpu.dll module load addresses are consistent
across all scanned processes, or the TEB FastSyscall
value can be extracted from each process for analysis,
but this can present access issues.

Image 22. – Targetted 9 byte scan with
Hook code content dump

Once the legitimate nine byte gate value is known, a
comparison can be made for each process currently
running, and any deviation flagged as being hooked.
As an additional step, as the gate value is limited to
nine bytes, the scanner can extract the malicious hook
location and perform a dump of the hooked functions
contents for analysis, or to be run through secondary
detection engines.

29

EDR bypassing via memory manipulation techniques

Using Vectored Exception
Handlers to side-step EDR

Vectored Exception Handlers (VEH) are an unframed exception handler mechanism
introduced in Windows XP. They allow developers to override Structured Exception
Handlers (SEH) within their developed code at a high level. Due to this priority in
exception handling, researchers and malicious actors have devised methods to
utilize this capability for circumventing intended command flow to bypass monitoring,
circumvent integrity checks, or even execute malicious code.

CHAPTER 3.

30

EDR bypassing via memory manipulation techniques

What is a SEH and VEH exactly?
The most basic form of exception handling is SEH, which is frame-based. This is what most developers know
as a try/catch block at its lowest level, with the try block making up a frame. However, each function is a frame.
A running process is made up of nested frames, with each step on the stack making up a frame all the way
outwards until the global frame is reached.

If you imagine in the code section above that the
“PatchEtw” function throws an “InvalidOperationEx-
ception” error, the catch block will handle the exception
appropriately. However, what happens if the function
throws an exception of a different type? In that case, the
exception gets passed to the encapsuling frame, namely
that of function “test()”. Again, if there isn’t appropriate
exception handling for the calling of the “test()”, it is
handled there. If not, it escalates to the frame/function
which is called a “test()” and so forth. If the exception
gets escalated to the global frame, it typically causes the
program to crash due to an unhandled exception error.

Now exception generation occurs at the CPU which is in
turn handed off to the kernel. This won’t go over all the
elements involved in exception generation within the
kernel, but will cover the bits that are important here. The
kernel then generates a number of objects which include
the “EnvironmentContext” and “ExceptionRecord”
objects. These are created within the “TrapFrame” in the
kernel space and then handed back to the user space
via the function “KiUserExceptionHandler” within ntdll.
dll via the EIP from the trap frame.

Image 23. – SEH example
within ETW in-line hook patch
source

31

EDR bypassing via memory manipulation techniques

Once control is back in the user space and the exception information is
with “KiUserExceptionHandler”, it will then call “RtlDispatchException”,
which uses the information from the EnvironmentContext and Excep-
tionRecord to identify which frame the exception happened within. The
function then scans the designated frame for appropriate handlers and
if not found, checks all containing frames outwards. This is the general
concept of how SEH works.

Image 24. – Overview of SEH
operation once handed back
to user space

32

EDR bypassing via memory manipulation techniques

So what about VEH? How is that different? The
primary difference is that VEH does not take frames
into account whatsoever. Whereas with SEH, it is
all about the frames, and the containing frames,
VEH is “frameless”. As such, it handles exceptions
depending on the order in which they were added to
the “Vectored_Handled_List”(VHL), which is stored
within ntdll.dll module memory space. When VEH
are defined, they are added to the VHL either at the
beginning or the end of the list. When an exception
is encountered, the OS will check the list in a linear
sequence from first to last.

The last thing to note is that VEH can have multiple
exceptions defined within them as comparison state-
ments against the contents of the generated exception
information. As such, one VEH entry can handle one
or hundreds of event types with no limitations.

Image 25. – Overview
of VEH operation once
handed back to User
space

The VEH in the list which handles the exception that is
encountered first, handles the exception regardless as
to whether there is another VEH with a handler for that
exception type or not. Significantly, this is done before
SEH are checked and that SEH are only checked
if no VEH entries for that exception type are found.
Microsoft did this by altering the control flow within
“KiUserExceptionHandler” by inserting a “RtlCall-
VectoredExceptionHandlers” function call just before
“RtlDispatchException” is called, and then, depending
on the result, skipping the second function altogether.

33

EDR bypassing via memory manipulation techniques

VEH always cutting the line to misbehave
Because VEH entries will always take priority in exception handling, we will cover some of the ways in which
malicious actors are abusing this capability. These range from preventing integrity checks by side stepping
GuardPage(GP), performing force jumps to malicious code, silently bypassing internal functions, and finally,
selectively avoiding EDR monitoring capabilities.

GuardPage Integry bypassing

GP is a memory integrity check capability
which allows for an exception to be thrown
if a memory page is altered. By placing GP
on a memory region, a program is able to
detect malicious/unauthorized manipulation
of its running memory, and behave in a
reactive manner by handling the generated
exception.

As mentioned, GP relies on the concept that
the exception “STATUS_GUARD_PAGE_
VIOLATION” is handled by the program to
protect itself. However, since this works on
exception handling, VEH can be used to
circumvent the operation. An IT specialist
going by the handle SH3N11 demonstrated
hooking via this method by injecting into a
program with GP enabled, and then installing
a custom VEH entry for the GP violation
exception. In their example, which applies
to any GP bypass, their injected function

defined a hooking function and its memory
space, adding a malicious VEH and trigger-
ing the GP violation on a known protected
memory region.

The magic happens in the malicious VEH
entry, which has two exception types defined
for capture- “STATUS_GUARD_PAGE_
VIOLATION” and “STATUS_SINGLE_STEP”-
the latter is typically used for debugging
purposes, but can be forcefully triggered by
modifying an ExceptionInfo object's Eflags
object. When the GP violation occurs, the
first handler is entered. This modifies the EIP/
RIP to the location of the hook code section.
Following that, the Eflags is modified to value
0x100. This flag value effectively tells the
kernel this is a debugged instance to trigger
a “STATUS_SINGLE_STEP” exception.
Once this is set, the control of the program is
returned to the injected process.

Image 26. – GuardPage
bypassing to run hooked
code content as part of
exception – SH3N12

11 https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/
12 https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/

34

EDR bypassing via memory manipulation techniques

 https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/
https://mark.rxmsolutions.com/hook-via-vectored-exception-handling/

Force Jump

One of the quirks of VEH is that
the function to add new VEH to the
process “AddVectoredExceptionHan-
dler” within kernel32.dll only requires
two arguments: a switch on whether to
go at the front or end of the VHL, and a
pointer to the defined VEH structure.
If the VEH is added to the start of the
VHL, the pointer will be called at the
first exception handled, whether the
pointers memory section has VEH
handler code within it or not.

If the pointer provided to “AddVectore-
dExceptionHandler” instead points to
a memory section filled with shellcode,
that shellcode will be executed at the
first exception that is encountered.
As long as the memory section ends
with the return value of “EXCEPTION_
CONTINUE_SEARCH”, the OS will
continue without issue, and continue
searching the VEH list and SEH for an
appropriate exception handler, and the
shellcode would have been success-
fully executed.

Image 27. – MSDN documentation
for AddVetoredExceptionHandler13

Since the single step exception flag was set, we immediately generated an excep-
tion which corresponds to the second entry in the VEH. Once in this block, the
attacker can now recall the original function with GP reset. This means the hook has
now executed and the original function is now executing, or the attacker can perform
any modifications they want to the protected memory section, and then re-assert
the GP status of the page at the end before the exception is returned. In the latter
example, the malicious VEH entry fully circumvents GP, as any alteration can be
made, and then the protection status reasserted without any alerting or preventative
action taking place, as the OS deems the exception as properly handled.

13 https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/
nf-errhandlingapi-addvectoredexceptionhandler

35

EDR bypassing via memory manipulation techniques

https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-addvectoredexceptionhandler
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-addvectoredexceptionhandler

Silent bypassing

As pointed out in the GP bypassing mechanism, by inject-
ing a VEH into a process or as part of a malicious process,
you can effectively neuter exception-based events as you
see fit. If applied on a broader scale, this means that any
function that is executed, as long as an exception can be
forced as part of operation, an attacker can use VEH to
omit any monitoring or subsequent activity.

In this use-case it is assumed that an exception can be
forced at a stage in the function that would still permit the
primary purpose, but prevent the unwanted activity via
exception generation. One method to do this would be to
identify functions of use and determine the point at which
monitoring events take place. By installing a command to
trigger a divide by zero exception just before its operation,
a VEH entry could be used to manipulate the control flow
and prevent logging. Although it is possible, this would be
a difficult use-case to implement.

EDR targetted bypass – Firewalker

FireWalker (FW) was a PoC tool developed by MDSec
in 202014, which leveraged VEH in order to bypass
certain EDR products, which then utilized hooked
functions for telemetry acquisition. Essentially, this
tool scans for hooks or pointer duplication in popularly
monitored module functions of a running process,
and if found, utilizes a similar bypass mechanism as
outlined for GP.

The tool scanning capabilities are fairly complex and
was explained in detail within MDSecs own material,
so we will not cover the internal scanner elements
and scanning/duplication that are used to affect the
step over via locating the hooked and circle back jmp
commands. The key point is how FW prevents the hook
from executing and allows for the bypass to take place.
To that end, it relies on VEH.

Image 28. – Overview of
FireWalker operation

14 https://www.mdsec.co.uk/2020/08/
firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/

36

EDR bypassing via memory manipulation techniques

https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/

To effect the scanning capability, FW implements
“EXCEPTION_SINGLE_STEP” (which is the same
as “STATUS_SINGLE_STEP”) just before calling
the desired function in order to effect a trap block. By
manipulating the Eflags register (as with GP), they
force the following command execution to create a
single step exception, which is subsequently caught
by their VEH entry. In the case of FW the exception
then checks the next command (EIP + 1) for whether
this matches to a known call or jmp opcode format.
If it does, then the scan to resolve the hooks return
address is made. If not, the function continues unin-
terrupted. If the scan does find the hook code and the
return address within the hook, it modifies the EIP to
point to that location before returning from the excep-
tion, meaning that the hook is effectively stepped over.

Detecting VEH usage

In order to detect the use of VEH and monitor its use
and contents, there is a primary component that needs
to be resolved: the VHL. The VHL contains the current
list of VEH entries for a process, the contents of which
can only be decoded with the process cookie for the
target process.

The most evident and prominent work on VEH
enumeration was conducted by Dmitri Fourny15,

who outlined where the VHL is stored and how it can
be acquired. In addition, Ollie Whitehouse, over at
the NCCGroup, has done some amazing work on
optimizing Dmitri’s work for modern systems and
ironing out some deviations that have occurred during
subsequent OS revisions16. Ollie has developed a PoC
scanner code as part of their DetectWindowsCopyOn-
WriteForAPI17 repository, which is what we based our
testing and adaptations on.

The VHL list is stored in the native ntdll.dll module
memory instance and is referenced by the RtlDispat-
chException function during operation. In order to do
this, the function obviously needs to know the location
of the VHL. Dmitri found that the pointer for the VHL is
stored as “LdrpVectoredHandlerList” and that it can
be heuristically scanned within specific functions. By
scanning the ntdll.dll for specific functions and then
pattern matching the code sections, we can extract the
VHL pointer. Three of the known functions to use the
VHL pointer are “RtlpCallVectoredHandlers”, “RtlAd-
dVectoredExceptionHandler”, and “RtlRemoveVec-
toredExceptionHandler”, all of which you can assume
directly interact with the VHL. The signature scanner in
our method is “0x4c 0x8d 0x25”. Then for the pointer,
copy ‘function address + signature offset +3’ for 4
bytes, and you will have acquired the VHL.

Image 29. –Acquisiton
of VHL pointer 18

15 https://dimitrifourny.github.io/2020/06/11/dumping-veh-win10.html
16 https://research.nccgroup.com/2022/03/01/
detecting-anomalous-vectored-exception-handlers-on-windows/
17 https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/
master/d-vehimplant
18 https://research.nccgroup.com/2022/03/01/
detecting-anomalous-vectored-exception-handlers-on-windows/

37

EDR bypassing via memory manipulation techniques

https://dimitrifourny.github.io/2020/06/11/dumping-veh-win10.html
https://research.nccgroup.com/2022/03/01/detecting-anomalous-vectored-exception-handlers-on-windows/
https://research.nccgroup.com/2022/03/01/detecting-anomalous-vectored-exception-handlers-on-windows/
https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-vehimplant
https://github.com/nccgroup/DetectWindowsCopyOnWriteForAPI/tree/master/d-vehimplant
https://research.nccgroup.com/2022/03/01/detecting-anomalous-vectored-exception-handlers-on-windows/
https://research.nccgroup.com/2022/03/01/detecting-anomalous-vectored-exception-handlers-on-windows/

In order to decode the VEH entry, you
will need to decode the pointer in the
VHL. To do this, you use “NtQuery-
InformationProcess” to acquire the
process cookie, and then perform
“RotateRight64” operations on the
pointer provided. After the rotation,
it will return the memory address for
where the VEH code has been stored,
which is checked via the exception
handler process. Once we have the
handler code address, we can perform
any number of analytics against the
handler code, such as heuristics,
handler location assessment, or even
the exception type being used.

As a basic example, checking the
exception types being caught can
allow for some quick wins in this
area. By scanning the VEH block for
exception handler byte sequences
outlined in winnt.dll, we can isolate
the exception handling blocks. Once
in the block, we can then scan for
comparison opcode sections and
check their compared value for
corresponding constant exception
type values, as outlined in winnt.h. In
this way, we can scan the VEH block
and identify all the exception types the
VEH has been crafted to handle, and
perform program to exception type
comparisons.

Image 30. – VEH enumerator
adapted for exception type
scanning

38

EDR bypassing via memory manipulation techniques

For example, EXCEPTION_SINGLE_STEP is typically
only used in debugging programs and platforms, and
therefore its presence in arbitrary or sensitive process-
es can be an easy indicator of malicious VEH usage,
such as in the case of FW. As all security bypass
techniques rely on being able to trigger an immediate
exception, they use the EXCEPTION_SINGLE_STEP,
which is, otherwise rarely encountered outside of
development environments, making it an easy detec-
tion criteria. Alternatively, exception types of STATUS_
INTEGER_DIVIDE_BY_ZERO are rare at a VEH level,
and can be used to determine anomalous VEH entries,
if not outright malicious.

During experimentation using this detection criteria
for exception types, only a small set of alerts were
generated with a very small subset being false
positives, which were easily attributed by the nature of
the process (Visual Studio development environment
debug flags).

The problem with x86 and VEH

A problem alluded to by Ollie's work is that the
scanner developed, only works on x64. The results
of x86 processes always come out as UNKNOWN
for the module resolution, and the VEH handle is

unresolvable. After extensive analysis, the reason
for this became clear; the VHL for the entire system
including the WOW environment is stored in the native
ntdll.dll module memory instance. Because of this,
the memory address is in x64 format, which when
attempted to be resolved against an x86 process,
does not work. That process, can only work up to the
x32 memory range. Yet the VEH for x86 does work
during exception handling.

How can this be possible? The reason is the exception
is handled in the x64 CPU mode before being returned
to the x32 CPU mode in WOW. Therefore, the physical
x64 address that the VEH resolves to can be accessed
by the exception handler in x64 mode with the correct
process permissions, and then return the results back
to the calling process in WOW. However, from a scanner
perspective, this throws up a huge problem. A scanner
running in WOW x86 cannot directly access the native
ntdll.dll for the VHL list without switching to the x64 CPU
mode. And a x64 scanner instance cannot use a WOW
x86 process handle to resolve an x64 physical address
without getting a memory access violation.

Image 31. – Access violation
error when resolving x86
process VEH pointer

39

EDR bypassing via memory manipulation techniques

The memory access violation occurs because the x64 memory
region VAD (Virtual Address Descriptor) for a WOW x86 process
is restricted by the kernel. As x32 processes have a limit of
4GB of memory (with large address flag enabled) this is done
to maintain stability in the system. As the x64 native system will
assign the WOW x86 process, a virtual address range in the x64
physical address capacity, wherever it best fits arbitrary memory
access outside the defined virtual range, can be problematic.
Therefore, the handle for the WOW x86 process will always result
in an access violation when trying to resolve its own VEH handle
stored in an x64 address in an access violation when trying to
resolve its own VEH handle stored in an x64 address.

This presents only two possible solutions. Either we
manually switch between CPU modes within our
scanner, or we resolve the physical address to a virtual
address and resolve it via the WOW x86 process
handle. Many researchers and attackers use manual
CPU mode switching in order to achieve arbitrary
x32 or x64 command execution on a system which
supports both architectures (through WOW). This
requires the assembly (ASM) of Heavens Gate (which
we discussed earlier) to be available to the scanner
code. By using a custom ASM gate, a program can
jump between CPU modes arbitrarily. However, most
research into this area highlights the potential insta-
bility in using such operations, as this is not intended

Image 32. – VAD installed
for Kernel restricted memory
region in x64 range at
0x7FFF0000

by the OS. As such, while manual CPU switching is
an option, it may not be overly stable for monitoring
solution deployment unless great care is taken.

The alternative revolves around utilizing elements of
the Memory Management Routine (MMR) component
of the OS kernel. There is a function within the MMR
called “MmGetVirtualForPhsyical”, which resolves a
physical address to its virtual counterpart by tracing it
back through the kernel-stored page tables. This would
allow the virtual address assigned to the x64 physical
address to be acquired (which should be in x32
format), and used via the WOW x86 process handler
for the VEH resolution.

40

EDR bypassing via memory manipulation techniques

Another method devised by the hacker
Xerox, is that if MMR access can be gained
to get a snapshot of the page-tables, a
user land version of the information can be
updated using system event monitoring. As
such, only one such access event would be
required. But this, as a prime example, also
presents a problem for creating access to the
MMR in that it can open up several security
concerns caused by such user to kernel-level
interconnectivity. Access to the MMR is
heavily restricted for good reason, as manip-
ulation of the page tables, or access to its

Image 33. – MmGetVirtu-
alForPhysical MMR Kernel
function details19

high-level functions, can be easily abused.
Purposefully introducing such access may
be an unacceptable risk.

The conclusion is that monitoring WOW x86
processes from an x64 scanner is not simple
and the available solutions are all prone
to instability or security issues. Although
this type of monitoring is possible, it has
to be determined by the developer of such
a scanner whether the risks outweigh the
monitoring potential.

19 http://web.archive.org/web/20220926121708/https://www.codewarrior.cn/ntdoc/wrk/mm/MmGetVirtual-
ForPhysical.htm

41

EDR bypassing via memory manipulation techniques

http://web.archive.org/web/20220926121708/https://www.codewarrior.cn/ntdoc/wrk/mm/MmGetVirtualForPhysical.htm
http://web.archive.org/web/20220926121708/https://www.codewarrior.cn/ntdoc/wrk/mm/MmGetVirtualForPhysical.htm

Summary

MMT’s are wide and varied in their complexity and in the mechanisms they choose
to target in order to achieve their desired alterations. In all the techniques presented
here, they can be used on both targeted/hijacked processes as well as malicious
payloads. Used for either malicious operation or to disguise and evade detection for
adjacent malicious operations, MMT’s are a tried-and-true mechanism to achieve
these ends, and consequentially, be continuously analyzed.

Security vendors and researchers use a wide range of methods to monitor and
detect malicious operations. But as FW demonstrated, even those can be directly
targeted by MMT’s. If not, MMT’s can be used to dodge and side-step otherwise
revealing operations that attackers may use. Yet, in order to stay ahead of the defen-
sive operators, the development of new MMT’s must not stop either. As the security
field has matured over the last decade, so has its capacity to proactively seek out
new offensive techniques or vulnerabilities, and devise monitoring solutions or
ethically disclose such weaknesses to the vendors.

Therefore, although the use of MMT’s will in all likelihood be a never-ending arms
race, the use of tried-and-true mechanisms like those described in this document
are also likely to be around for a long time. With slight modifications or a razor-sharp
targeted design, such mechanisms can still prove effective in certain situations. As
such, defenders must be ever vigilant and roll with the punches.

42

EDR bypassing via memory manipulation techniques

WithSecure™, formerly F-Secure Business, is cyber
security’s reliable partner. IT service providers,
MSSPs and businesses – along with the largest
financial institutions, manufacturers, and thousands
of the world’s most advanced communications
and technology providers – trust us for outcome-
based cyber security that protects and enables
their operations. Our AI-driven protection secures
endpoints and cloud collaboration, and our intelligent
detection and response are powered by experts
who identify business risks by proactively hunting for
threats and confronting live attacks. Our consultants
partner with enterprises and tech challengers to
build resilience through evidence-based security
advice. With more than 30 years of experience in
building technology that meets business objectives,
we’ve built our portfolio to grow with our partners
through flexible commercial models.

WithSecure™ Corporation was founded in 1988, and
is listed on NASDAQ OMX Helsinki Ltd.

Who We Are

EDR bypassing via memory manipulation techniques

	Summary
	Using Vectored Exception Handlers to side-step EDR
	What is a SEH and VEH exactly?
	VEH always cutting the line to misbehave
	PageGuard Integry bypassing
	Force Jump
	Silent bypassing
	EDR targetted bypass – Firewalker
	Detecting VEH usage
	The problem with x86 and VEH

	Chapter 3.
	Heavens gate hooking AKA - how to be a syscall bouncer in x86
	How does Heavens Gate work?
	How do we monitor for a sinful Heavens Gate?

	Chapter 2.
	Is Kernel manipulation possible
post 18950?
	Legacy kernel patching for rootkit level stealth
	 How does Kernel memory manipulation work?
	Detecting Kernel level manipulation in and prior to build 18950

	In-line hooking of undocumented module functions, a clever deviation
	Problematic detection, too much or too inaccurate

	In-Line hooking module functions,
an oldie but a goodie
	How to monitor for and detect in-line module function hooking

	Manipulating your own
memory to avoid detection
	What is a memory
manipulation technique (MMT)?
	Chapter 1:
Manipulation and hooking basics
	Executive summary

