

Melcome!

- Curious about RF?
- Looking for awesome new projects?
- Seeking adventure?

Signal Safari

+ Agenda **RF** Overview / Exploration ++ GQRX Light Switch Reversing ++ RTL_433 Fan Controller + + GNU Radio Companion (GRC) Signal Security +Continuing the Adventure +

Safari Guide Katie Knowles, @_sigil + Security Consultant, MWR InfoSecurity + RF Enthusiast + Infosec Explorer

+

Fundamentals

- RF travels as electromagnetic (EM) waves
- EM waves travel at the speed of light (c)
- Wavelength (λ): The length of the wave
- Frequency (*f*): How many wavelengths happen in a unit of time, based on the wave's speed
- Multiplying Wavelength (λ) by Frequency (f) will always equal the speed of light (c)

 $c = 3 * 10^8 m/s = f * \lambda$

Investigating Unknown Signals:

RTL-SDR (~\$30)

LINUX (Free)

First Steps with GQRX

MUNICAN MUCHNING MUNICAN MUCHNING WUNICHN MUNICAN MUNICAN NU

- + Simple program for tuning Software
 Defined Radios (SDRs)
- "Waterfall" view of activity at different frequencies over time
- Frequency range limited based on hardware of SDR in use

http://gqrx.dk/

Short-Range Device Frequencies

er <i>f</i>	Starts at:	Ends at:	Туре
MHz	433.05 MHz	434.79 MHz	ISM
MHz	902 MHz	928 MHz	ISM
GHz	2.4 GHz	2.5 GHz	ISM
GHz	5.725 GHz	5.875 GHz	ISM
MHz	285 MHz	322 MHz	Unlicense

Simple Control Signals

+ ASK: Amplitude–Shift Keying

Amplitude (strength) of signal communicates 1 or 0.

Pictured: A short pulse is 0, and a long pulse is 1. Also known as On–Off Keying (OOK).

+ FSK: Frequency–Shift Keying

Frequency (*f*) of signal communicates 1 or 0.

Pictured: A low frequency is 0, and a high frequency is 1.

MYSTERY SIGNAL?

File Edit View Search Terminal Help build\$rtl 433 -qa Found Rafael Micro R820T tuner Exact sample rate is: 250000.000414 Hz Sample rate set to 250000. Bit detection level set to 0 (Auto). Tuner gain set to Auto. Tuned to 433920000 Hz. *** signal start = 339858, signal end = 399541 signal len = 59683, pulses = 175 Iteration 1. t: 94 min: 48 (109) max: 140 (66) delta 5 Iteration 2. t: 94 min: 48 (109) max: 140 (66) delta 0 Pulse coding: Short pulse length 48 - Long pulse length 140 Short distance: 43, long distance: 134, packet distance: 1418 p limit: 94 bitbuffer:: Number of rows: 7 55 33 00 : 01000001 01010101 00110011 0 {25} 00 -41 55 33 00 : 01000001 01010101 $\Theta\Theta$ [02] {25} 41 55 33 00 : 01000001 01010101 00110011 0 [03] {25} 41 55 33 00 : 01000001 01010101 00110011 0 https://github.com/merbanan/rt1_433

RTL_433

- + Command-line
- + Identifies unknown signals
- + Focused on 433 MHz range
- Can be tuned to +search at specific frequencies and other ranges


```
File Edit View Search Terminal Help
$rtl_433 -qa
Found Rafael Micro R820T tuner
Exact sample rate is: 250000.000414 Hz
Sample rate set to 250000.
Bit detection level set to 0 (Auto).
Tuner gain set to Auto.
Tuned to 433920000 Hz.
```

RTL_433 Demo: https://www.youtube.com/embed/BjUsPk9I13g

Command Map

Switch	State	RF Command	I U bits 2 bits 8 bits 4 bi
1	On	010000101 01 01010011 0011	" "Preamble" All or One? Switch # On/
1	Off	010000101 01 01010011 1100	
2	On	010000101 01 01011100 0011	
2	Off	010000101 01 01011100 1100	010000101 01 01011100 00
3	On	010000101 01 01110000 0011	
3	Off	010000101 01 01110000 1100	Remote ID One Switch 2
4	On	010000101 01 11010000 0011	
4	Off	010000101 01 11010000 1100	
All	On	010000101 11 01010000 0011	
All	Off	010000101 11 01010000 1100	"This is Remote 0100000101
			Turn Switch 2 on."

MYSTERY SIGNAL?

New Challenges, New Tools

<u>https://wiki.gnuradio.org/index.php/GNURadioCompanion</u>

- + RTL_433 won't discover signals without a "nearby" frequency to look at
- + GQRX is good for tuning, but has limited features and views
- + GNU Radio Companion (GRC) can create software radio systems
- + Simple, block-based design generates code using GNU Radio in Python

GQRX

Tool that uses GNURadio

GRC

Builds tools that use GNURadio

				Analog Alpha: 0.0994 Axes Options Secs/Div: + Counts/Div: + Y Offset: + T Offset: + T Offset: + Autorange Channel Options < Ch1 Ch2 Coupling: DC * Marker: Line Link *
260	265	270	275	Stop

Slider for *freq* variable tunes from 300-310 MHz

+ FFT sink plot shows highest signals near current center frequency

GUI scope plot shows signal strength at center frequency over time

Signal Safari

With f known, With f known, RTL_433 can ATL_433 can handle the handle the rest...

File Edit View Search Terminal Help

Found Rafael Micro R820T tuner Sample rate set to 250000. Bit detection level set to 0 (Auto). Tuner gain set to Auto. Tuned to 304100000 Hz. signal len = 518008, pulses = 1320

Short distance: 95, long distance: 187, packet distance: 2456

limit: 134 bitbuffer:: Number [00] {22} 70 ff 7c 01] {22} /0 ff /c [02] {22} 70 ff 7c [03] {22} 70 ff 7c


```
build$ ./src/rtl_433 -qa -f 304100000
Exact sample rate is: 250000.000414 Hz
*** signal start = 375296, signal end = 893304
Iteration 1. t: 134 min: 88 (275) max: 180 (725) delta 13
Iteration 2. t: 134   min: 88 (275)   max: 180 (725)
                                                        delta 0
Pulse coding: Short pulse length 88 - Long pulse length 180
```

01	rows: 25	5	
	01110000	11111111	011111
	01110000	111111111	011111
1	01110000	11111111	011111
	01110000	11111111	011111

MYSTERY SIGNAL?

File Edit View Search Terminal Help <u>User cancel exiting</u> ¶rtl 433 -qa -f 315000000 Found Katael Micro K8201 tuner Receiving unlock Exact sample rate is: 250000.000414 Hz Sample rate set to 250000. Code with known Bit detection level set to 0 (Auto). Tuner gain set to Auto. Tuned to 315000000 Hz. device f *** signal start = 291725, signal end = 405307 signal len = 113582, pulses = 582 Iteration 1. t: 116 min: 80 (540) max: 153 (42) delta 8. Iteration 2. t: 116 min: 80 (540) max: 153 (42) delta 0 Distance coding: Pulse length 116 Short distance: 66, long distance: 140, packet distance: 1928 p limit: 116 bitbuffer:: Number of rows: 2 *** signal start = 470452, signal end = 584008 signal len = 113556, pulses = 580 Iteration 1. t: 116 min: 80 (536) max: 153 (44) delta 8 Iteration 2. t: 116 min: 80 (536) max: 153 (44) delta 0 Distance coding: Pulse length 116 Short distance: 66, long distance: 140, packet distance: 1903 p limit: 116 bitbuffer:: Number of rows: 2 001 [01] *** signal start = 653918, signal end = 767543

90	00	00	00	00	00	00	00	00	00	00	03	88	40	22	10	05	4e	48	48
00	00	00	00	00	00	00	00	00	00	00	03	88	40	22	10	05	4e	48	48

a2 00 a2 00

File Edit View Search Terminal Help	
\$rtl_433 -f 315000000	
Registering protocot [1] "Rubicson Temperature Sensor"	
Registering protocol [2] "Prologue Temperature Sensor"	
Registering protocol [3] "Waveman Switch Transmitter"	
Registering protocol [4] "LaCrosse IX Temperature / Humidity Sensor"	
Registering protocol [5] "Acurite 609IXC lemperature and Humidity Sensor"	
Registering protocol [6] "Oregon Scientific Weather Sensor"	
Registering protocol [7] "Mebus 433"	
Registering protocol [8] "KlikAanKlikUit Wireless Switch"	
Registering protocol [9] "AlectoV1 Weather Sensor (Alecto WS3500 WS4500 Ventus W155/W044 Oregon)"	
Registering protocol [10] "Cardin S466-TX2"	
Registering protocol [11] "Fine Offset Electronics, WH2 Temperature/Humidity Sensor"	
Registering protocol [12] "Nexus Temperature & Humidity Sensor"	
Registering protocol [/0] "Toyota TPMS"	
Registering protocol [71] "Ford TPMS"	
Registering protocol [72] "Renault TPMS"	
Registered 72 out of 91 device decoding protocols	
Found 1 device(s):	
0: Realtek, RTL2838UHIDIR, SN: 00000001	
Using device 0: Generic RTL2832U OEM	
Found Rafael Micro R8201 tuner	
Exact sample rate is: 250000.000414 Hz	
Sample rate set to 250000.	
Bit detection level set to 0 (Auto).	
Tuner gain set to Auto.	
Reading samples in async mode	
luned to 315000000 Hz	
2018-01-17 22:34:54 : Toyota : TPMS : 6f1b1/82 : 901c0075 : C	RC
2018-01-17 22:34:54 : Toyota : TPMS : 6f1b19a8 : 901c0075 : C	RC
2018-01-1/22:34:55: loyota: TPMS : 6f1b19eb : 6fe30075 : C	RC

Signal Safari

RF Signal Security

- Securing RF systems can be tricky
- Hardware design, limited resources make improvements difficult
- Things are (slowly) improving
- Each niche in security offers its own unique challenges. Don't be afraid to explore!

More Curiosity => More Solutions

- Signal Safari

Continue Your Safari:

Flavio D. Garcia:

USENIX Security '16, "Lock It and Still Lose It: On the (In)Security of Automotive Remote Keyless Entry Systems"

Michael Ossman:

Software Defined Radio with HackRF https://greatscottgadgets.com/sdr/

ARRL, Amateur Radio: https://www.arrl.org/

Samy Kamkar:

DC 23, "Drive It Like You Hacked It"

Digital Ding Dong Ditch https://github.com/samyk/dingdong

FCC ID Search: https://www.fcc.gov/oet/ea/fccid

Browse new registrations: https://fccid.io/#fccid-today

Questions?

- Reach out at:
 - @_sigil
- Katie.Knowles@mwrinfosecurity.com

