
++

MWR Labs

Bug Hunting with Static Code

Analysis

Nick Jones

6th June 2016

++

Bug Hunting with Static Code Analysis

+ Software developers make mistakes

+ Mistakes = bugs = vulnerabilities

+ Our goal is fewer bugs

The Problem

++

Bug Hunting with Static Code Analysis

Nick Jones

+ Security Consultant at MWR InfoSecurity

+ Web application security, infrastructure assessments

+ Previous experience doing commercial software

development

+ Developed bespoke analysis tools for clients

Who am I?

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

+ MWREvents has developed a new online events

planning platform – website and mobile apps

+ Their developers are of average quality

+ No in-house security experts

+ Want to find and fix all their security issues

A Case Study

++

Bug Hunting with Static Code Analysis

Static Analysis

+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

How Do We Find Bugs?

++

Bug Hunting with Static Code Analysis

Static Analysis

+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

How Do We Find Bugs?

++

Bug Hunting with Static Code Analysis

Static Analysis

+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

How Do We Find Bugs?

++

Bug Hunting with Static Code Analysis

Manual

+ Give code to smart security experts

+ They read, understand and spot bugs

Automated

+ Pass code to tool

+ Tool parses code, hunts for known issues

How Do We Code Review?

++

Bug Hunting with Static Code Analysis

void echo ()

{

char buf[8];

gets(buf);

printf("%s\n", buf);

}

Code Review - Examples

++

Bug Hunting with Static Code Analysis

webView.getSettings().setJavaScriptEnabled(true);

Code Review - Examples

++

Bug Hunting with Static Code Analysis

+ Manual code review is expensive

~45 Million LOC ~86 Million LOC ~24 Million LOC

Manual Code Review – The Downsides

++

Bug Hunting with Static Code Analysis

+ Steve McConnell (Code Complete) says 10-20 defects per 1000 lines of code

~675,000 bugs ~1,290,000 bugs ~360,000 bugs

How Many Bugs Is That?

++

Bug Hunting with Static Code Analysis

Automated searching of source code for issues

+ Higher up front costs

+ ‘Free’ security once built and configured

+ Catch low hanging fruit automatically

Static Code Analysis

++

Bug Hunting with Static Code Analysis

To best use tools, you need to understand them.

+ Language types

+ Automata

+ Parsers

Computer Science Theory Ahead

++

Bug Hunting with Static Code Analysis

+ “[A] set of strings of symbols that may be

constrained by rules that are specific to it”

+ Defined by a grammar

Languages

++

Bug Hunting with Static Code Analysis

Chomsky’s Language Hierarchy

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

Chomsky’s Language Hierarchy

++

Bug Hunting with Static Code Analysis

Regular expressions can parse any regular language

+ Act as a finite automata

+ List of states, list of transitions between them

+ Process input until accept or error state is reached

In practice, modern regexes are far more powerful than the

definition given here, but the key limitations remain

Regular Expressions

++

Bug Hunting with Static Code Analysis

Regular Expressions

++

Bug Hunting with Static Code Analysis

Match code snippets that look like known problems

+ Quick and easy to write, so low cost

+ “Does my code match this very specific known issue?”

+ Bad imports

+ Calls to known dangerous functions

+ Known security misconfigurations

Bug Hunting with Regular Expressions

++

Bug Hunting with Static Code Analysis

Code:

webView.getSettings().setJavaScriptEnabled(true);

Regex:

‘setJavaScriptEnabled\(true\)’

Code Review - Examples

++

Bug Hunting with Static Code Analysis

Code:

webView.getSettings().setJavaScriptEnabled(true);

Regex:

‘setJavaScriptEnabled\(true\)’

Code Review - Examples

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG) {

printf('Debug statement 1: %s', var1);

printf('Other stuff: %s', var1);

printf('Finally: %s', var1);

}

Regex:

‘printf\(.*\)’

Regular Expressions - Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG) {

printf('Debug statement 1: %s', var1);

printf('Other stuff: %s', var1);

printf('Finally: %s', var1);

}

Regex:

‘printf\(.*\)’

Regular Expressions - Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG) {

printf('Debug statement 1: %s', var1);

printf('Other stuff: %s', var1);

printf('Finally: %s', var1);

}

Regex:

‘printf\(.*\)’

Regular Expressions - Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG) {

printf('Debug statement 1: %s', var1);

printf('Other stuff: %s', var1);

printf('Finally: %s', var1);

}

Regex:

‘printf\(.*\)’

Regular Expressions - Example

++

Bug Hunting with Static Code Analysis

Regular expressions can’t ‘count’

+ No way to maintain state

+ Cannot back trace

Regular Expressions – The Disadvantages

++

Bug Hunting with Static Code Analysis

Two options to check for debug guard:

+ Check backwards line by line until you reach

beginning of file - inefficient

+ Check X many previous lines – lots of false positives

Three alerts generated for the same missing guard

Regular Expressions – The Disadvantages

++

Bug Hunting with Static Code Analysis

+ Regular expressions only match regular languages*

+ Programming languages usually context-free

*mostly

Regular vs Context-Free Languages

++

Bug Hunting with Static Code Analysis

Chomsky’s Language Hierarchy

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

+ Superset of regular languages

+ Anything that can be accepted by a pushdown

automata

Context-Free Languages

++

Bug Hunting with Static Code Analysis

+ Finite State Machines with stacks

+ Decide transition based on both input and top of

stack

+ Can push/pop to stack as needed

Pushdown Automata

++

Bug Hunting with Static Code Analysis

Pushdown Automata

++

Bug Hunting with Static Code Analysis

+ Converts text into a hierarchical data structure

+ Several different types, depending on what you’re

parsing

+ TL;DR: Construct a Parse Tree or Abstract Syntax

Tree (AST) from the source code

Parsers

++

Bug Hunting with Static Code Analysis

Two separate stages

+ Lexer splits input text into tokens (strings with an

understood meaning)

+ Parser constructs AST or similar from list of tokens

Can combine both – scannerless parsing

Parsers

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Lexer Example

Lexed Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Lexer Example

Lexed Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

++

Bug Hunting with Static Code Analysis

Basic:

+ Search AST for dodgy function calls, check for guards

+ Check for questionable imports

+ Same as before, fewer false positives

Advanced:

+ Control Flow Graphs (CFGs)

+ Taint Analysis

We’ve got an AST, now what?

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

“a representation, using graph notation, of all paths that

might be traversed through a program”

+ Each basic block represented as a graph node

+ Jump targets start block, jumps end block

+ Jumps represented as directed edges

Control Flow Graphs

++

Bug Hunting with Static Code Analysis

Control Flow Graphs

++

Bug Hunting with Static Code Analysis

+ Allows tracing of execution dependant on given inputs

without running the application

+ Trace data sinks back to original source

+ Data sanitized several function calls ago? Trace the

graph back and find it

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where

user=‘ + $user + ‘ and password=‘ + $password + ‘;’);

}

Why Should I Care About Control Flow Graphs?

++

Bug Hunting with Static Code Analysis

Downsides:

+ Higher upfront cost to develop

+ More computationally intensive

Parsers

++

Bug Hunting with Static Code Analysis

These tools all fit into a larger picture, all of which

needs to work together

+ Static code analysis

+ Manual code review

+ Fuzzing

+ Functional testing

The Bigger Picture

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

Two primary categories of people:

+ Bug hunters – security consultants, people doing

bug bounties or looking for 0-days

+ Developers – people building applications who care

about security

Case Studies

++

Bug Hunting with Static Code Analysis

+ Target identification – pick a project to go after

+ Find low hanging fruit

+ Identify ropey parts of the codebase

I’m a bug hunter, why do I care?

++

Bug Hunting with Static Code Analysis

+ Download source for a bunch of projects

+ Run analyser on all of them, look at the outputs

Target Identification

++

Bug Hunting with Static Code Analysis

Target Identification - Example

OpenSSL LibreSSL GnuTLS mbedTLS

Flawfinder 1794 1389 1228 1381

++

Bug Hunting with Static Code Analysis

./src/pkcs11.c:871: [4] (buffer) strcpy: Does not check

for buffer overflows when copying to destination.

Consider using strncpy or strlcpy (warning, strncpy is

easily misused).

Target Identification - Example

++

Bug Hunting with Static Code Analysis

+ SQL Injection

+ XSS

+ Buffer Overflows

+ Some Use after Frees

Low Hanging Fruit

++

Bug Hunting with Static Code Analysis

SQL Injection, XSS, Buffer Overflows

+ Look for data sinks – SQL queries, user-provided

data rendering etc

+ Trace input to data sinks back up CFG to source

+ If no sanitisation on user-provided data, probably

an attack vector

Low Hanging Fruit

++

Bug Hunting with Static Code Analysis

Use after frees

+ Track allocation/deallocation of pointers through CFG

+ UAF where pointer referenced after deallocation

Low Hanging Fruit

++

Bug Hunting with Static Code Analysis

+ Flawfinder (C/C++)

+ Graudit (ASP/C/.NET/JSP/Perl/PHP/Python)

+ Find Security Bugs (Java, FindBugs Plugin)

+ RATS (C/C++/Perl/PHP/Python)

+ RIPS (PHP)

+ Brakeman (Ruby/Rails)

Example Tools

++

Bug Hunting with Static Code Analysis

For building your own:

+ Clang Analyzer

+ PLY and libraries that build on it (PLYJ for Java)

+ Pyparsing

+ ANTLR

+ Coco/R

Example Libraries/Platforms

++

Bug Hunting with Static Code Analysis

+ The problem of applications security

+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

What will we be covering?

++

Bug Hunting with Static Code Analysis

+ Catch security issues before the penetration tests

+ One developer builds it, everyone can use it

+ Can be built into existing toolchains and

development lifecycles

Static Analysis for Developers

++

Bug Hunting with Static Code Analysis

+ CI: Continuous Integration

+ Continuously integrating new features as they’re

developed

+ Periodic automated compilation and testing

Static Analysis and CI

++

Bug Hunting with Static Code Analysis

+ Hudson

+ Jenkins

+ Travis CI

+ Bamboo

+ Team Foundation Server

CI Tooling Examples

++

Bug Hunting with Static Code Analysis

+ Developer checks in code

+ Server compiles code

+ Test suites are automatically run

CI Workflow

++

Bug Hunting with Static Code Analysis

CI Workflow

++

Bug Hunting with Static Code Analysis

+ Automated security testing

+ Catch issues as they are introduced to the codebase

+ Catch regressions in code before it hits production

+ Runs automatically, no developer interaction required

CI Advantages

++

Bug Hunting with Static Code Analysis

Case study - M&S data breach, Oct 2015

+ Developer error led to users being presented with

other people’s data on login

+ Personal details and partial card numbers exposed

+ Automated regression testing as part of CI would

likely catch this

CI – Benefits

++

Bug Hunting with Static Code Analysis

+ Veracode

+ Coverity

+ Fortify

+ Checkmarx

+ Klocwork

Commercial Static Analysis Tools

++

Bug Hunting with Static Code Analysis

Commercial Tools

++

Bug Hunting with Static Code Analysis

+ Identifying where security risks are likely to lie in

their codebase

+ Writing custom rules for existing static analysis

engines

+ Developing bespoke analysis tools

+ Advising on integrating automated security testing

into development lifecycles

Where Security Expertise Can Help

++

Bug Hunting with Static Code Analysis

+ Static analysis can provide low-cost security checks

once configured

+ ASTs and CFGs let you do all kinds of awesome

things

+ Automated code analysis complements traditional

manual assessments

Conclusions

Bug Hunting with Static Code Analysis

Thanks for listening!

Questions?

