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The Problem

+ Software developers make mistakes
+ Mistakes = bugs = vulnerabilities

+ Our goal is fewer bugs
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Who am |1?

Nick Jones
+ Security Consultant at MWR InfoSecurity

+ Web application security, infrastructure assessments

+ Previous experience doing commercial software
development

+ Developed bespoke analysis tools for clients
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What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer
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A Case Study

+ MWREvents has developed a new online events
planning platform - website and mobile apps

+ Their developers are of average quality
+ No in—-house security experts

+ Want to find and fix all their security issues
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How Do We Find Bugs?

Static Analysis
+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing
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How Do We Find Bugs?

Static Analysis
+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes
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How Do We Code Review?

Manual
+ Give code to smart security experts

+ They read, understand and spot bugs

Automated
+ Pass code to tool

+ Tool parses code, hunts for known issues
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Code Review - Examples

void echo ()

{
char buf[8];
gets(buf):
printf("%s\n", buf):
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Code Review - Examples

webView.getSettings().setJavaScriptEnabled(true);
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Manual Code Review - The Downsides

+ Manual code review is expensive

~45 Million LOC ~86 Million LOC ~24 Million LOC
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How Many Bugs Is That?

+ Steve McConnell (Code Complete) says 10-20 defects per 1000 lines of code

~675,000 bugs ~1,290,000 bugs ~360,000 bugs
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Static Code Analysis

Automated searching of source code for issues
+ Higher up front costs
+ ‘Free’ security once built and configured

+ Catch low hanging fruit automatically
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Computer Science Theory Ahead

To best use tools, you need to understand them.
+ Language types
+ Automata

+ Parsers
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Languages

+ “[A] set of strings of symbols that may be
constrained by rules that are specific to it

+ Defined by a grammar
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Chomsky’s Language Hierarchy

recursively enumerable

context-sensitive

context-free
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+ The problem of applications security
+ Regular Expressions
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+ Control Flow Graphs
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Regular Expressions

Regular expressions can parse any regular language

+ Act as a finite automata

+ List of states, list of transitions between them

+ Process input until accept or error state is reached

In practice, modern regexes are far more powerful than the
definition given here, but the key limitations remain
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Regular Expressions

not n not | not C
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Bug Hunting with Regular Expressions

Match code snippets that look like known problems

+

+

+

Quick and easy to write, so low cost

“Does my code match this very specific known issue?”

Bad imports
Calls to known dangerous functions

Known security misconfigurations

LABS
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Code Review - Examples
Code:
webView.getSettings () .setJavaScriptEnabled (true) ;
Regex:

‘setJavaScriptEnabled\ (true\)’



MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Code Review - Examples
Code:
webVliew.getSettings () .setJavaScriptEnabled (true) ;
Regex:

‘setJavaScriptEnabled\ (true\)’
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Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: 3s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %ss', varl);

J

Regex:

‘printf\(.*\)’
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Code:
1f (DEBUG) {

printf ('Debug statement 1: %s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %s', wvarl);

J

Regex:
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Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: %s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %s', wvarl);

J

Regex:

‘printf\(.*\)’
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Regular Expressions - The Disadvantages

Regular expressions can’t ‘count’
+ No way to maintain state

+ Cannot back trace
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Regular Expressions - The Disadvantages

Two options to check for debug guard:

+ Check backwards line by line until you reach
beginning of file - inefficient

+ Check X many previous lines - lots of false positives

Three alerts generated for the same missing guard
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Regular vs Context-Free Languages

+ Regular expressions only match regular languages*

+ Programming languages usually context-free

*mostly
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Chomsky’s Language Hierarchy

recursively enumerable

context-sensitive

context-free

R

regular
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What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer
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Context-Free Languages

+ Superset of regular languages

+ Anything that can be accepted by a pushdown
automata
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Pushdown Automata

+ Finite State Machines with stacks

+ Decide transition based on both input and top of
stack

+ Can push/pop to stack as needed
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Pushdown Automata

nite
control | 0

Sstate

e el ]

Input tape
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Parsers

+ Converts text into a hierarchical data structure

+ Several different types, depending on what you’re
parsing

+ TL:DR: Construct a Parse Tree or Abstract Syntax
Tree (AST) from the source code
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Parsers

Two separate stages

+ Lexer splits input text into tokens (strings with an
understood meaning)

+ Parser constructs AST or similar from list of tokens

Can combine both - scannerless parsing



MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Lexer Example

Code: Lexed Code:

if (DEBUG) 1f (DEBUG)

{ {
printf (..) ; printf (..);
printf (..); printf (..);
printf (..) ; printf (..);
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Lexer Example

Code: Lexed Code:

if (DEBUG) (DEBUG)

{ {
printf (..); printf (..);
printf (...); printf (..);
printf (..); printf (..);
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Parser Example

Code:
1f (DEBUG)
{

printf (..);
printf (..);
printf (..);
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Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);
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We've got an AST, now what?

Basic:

+ Search AST for dodgy function calls, check for guards
+ Check for questionable imports

+ Same as before, fewer false positives

Advanced:
+ Control Flow Graphs (CFGs)

+ Taint Analysis
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What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer
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Control Flow Graphs

‘a representation, using graph notation, of all paths that
might be traversed through a program”

+ Each basic block represented as a graph node
+ Jump targets start block, jumps end block

+ Jumps represented as directed edges
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Control Flow Graphs
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Why Should | Care About Control Flow Graphs?

+ Allows tracing of execution dependant on given inputs
without running the application

+ Trace data sinks back to original source

+ Data sanitized several function calls ago? Trace the
graph back and find it
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Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[ ‘user’], S POST|[ ‘password’]):;

function login (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J
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Sresult

login ($ POST[ ‘user’], S POST|[ ‘password’]):;

function logiln (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=' + Spassword + ‘;');

J
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Sresult

login ($ POST[ ‘user’], S POST|[ ‘password’]):;

function login (user, password) {

return login query(user, password);

function login query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J
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Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[ ‘user’], S POST|[ ‘password’]):;

function login (user, password) f{

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J
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Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], $ POST[ ‘password’]);

function login (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J
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Parsers

Downsides:
+ Higher upfront cost to develop

+ More computationally intensive
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The Bigger Picture

These tools all fit into a larger picture, all of which
needs to work together

+ Static code analysis
+ Manual code review
+ Fuzzing

+ Functional testing
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What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer
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Case Studies

Two primary categories of people:

+ Bug hunters - security consultants, people doing
bug bounties or looking for O-days

+ Developers - people building applications who care
about security
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I’'m a bug hunter, why do | care?

+ Target identification - pick a project to go after
+ Find low hanging fruit

+ ldentify ropey parts of the codebase
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Target Identification

+ Download source for a bunch of projects

+ Run analyser on all of them, look at the outputs
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Target Identification - Example

OpenSSL

LibreSSL

GnuTLS

mbedTLS

Flawfinder

1794

1389

1228

1381

MWR

LABS
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Target Identification - Example

./src/pkecs11.c:871: [4] (buffer) strcpy: Does not check
for buffer overflows when copying to destination.
Consider using strncpy or strlcpy (warning, strncpy is
easily misused).
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Low Hanging Fruit

+ SQL Injection
+ XSS
+ Buffer Overflows

+ Some Use after Frees
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Low Hanging Fruit

SQL Injection, XSS, Buffer Overflows

+ Look for data sinks - SQL queries, user-provided
data rendering etc

+ Trace input to data sinks back up CFG to source

+ If no sanitisation on user-provided data, probably
an attack vector
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Low Hanging Fruit

Use after frees
+ Track allocation/deallocation of pointers through CFG

+ UAF where pointer referenced after deallocation
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Example Tools

+ Flawfinder (C/C++)

+ Graudit (ASP/C/.NET/JSP/Perl/PHP/Python)
+ Find Security Bugs (Java, FindBugs Plugin)
+ RATS (C/C++/Perl/PHP/Python)

+ RIPS (PHP)

+ Brakeman (Ruby/Rails)
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Example Libraries/Platforms

For building your own:

+ Clang Analyzer

+ PLY and libraries that build on it (PLY] for Java)
+ Pyparsing

+ ANTLR

+ Coco/R
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What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer
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Static Analysis for Developers

+ Catch security issues before the penetration tests
+ One developer builds it, everyone can use it

+ Can be built into existing toolchains and
development lifecycles
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Static Analysis and Cl

+ CI: Continuous Integration

+ Continuously integrating new features as they’re
developed

+ Periodic automated compilation and testing
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Cl Tooling Examples

+ Hudson

+ Jenkins

w
fts

+ Travis CI Visual Studio'
Team Foundation Server
+ Bamboo

+ Team Foundation Server
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Cl Workflow

+ Developer checks in code
+ Server compiles code

+ Test suites are automatically run
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Cl Workflow

enkins EEEE N

robot EMABLE AUTC REFRESH

Jenkins

Project robot

! Back to Dashboard
L Status

o [fadd description
= Changes | Disable Project
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%
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:14:06 PM Critical tests 10 ‘ ‘ 10 IDEII.D
19437 PM All tests 10 10 100.0

#1 Aug 15 1 21:47 PM > Browse results
- o > Open smoke all report.html
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Permalinks

¢ Last build (£6), 20 hr ago
e Last stable build (£6), 20 hr ago
¢ Last successful build (#6), 20 hr ago
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Cl Advantages

+ Automated security testing
+ Catch issues as they are introduced to the codebase
+ Catch regressions in code before it hits production

+ Runs automatically, no developer interaction required
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Cl - Benefits

Case study - M&S data breach, Oct 2015

+ Developer error led to users being presented with
other people’s data on login

+ Personal details and partial card numbers exposed

+ Automated regression testing as part of Cl would
likely catch this
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Commercial Static Analysis Tools

+ Fortify
+ Checkmarx FDRTIFY(’ VERACOIDE

+ Klocwork 4 CHECKMARX

+ Veracode

+ Coverity
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Commercial Tools
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Where Security Expertise Can Help

+ ldentifying where security risks are likely to lie in
their codebase

+ Writing custom rules for existing static analysis
engines

+ Developing bespoke analysis tools

+ Advising on integrating automated security testing
into development lifecycles
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Conclusions

+ Static analysis can provide low-cost security checks
once configured

+ ASTs and CFGs let you do all kinds of awesome
things

+ Automated code analysis complements traditional
manual assessments
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Thanks for listening!

Questions?



