—I‘ MWR Labs

++
Bug Hunting with Static Code
Analysis

N1ck Jones

6th June 2016

MWR

ABS

MWR

LABS

—” Bug Hunting with Static Code Analysis

++

The Problem

+ Software developers make mistakes
+ Mistakes = bugs = vulnerabilities

+ Our goal is fewer bugs

¥ 1§

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Who am |1?

Nick Jones
+ Security Consultant at MWR InfoSecurity

+ Web application security, infrastructure assessments

+ Previous experience doing commercial software
development

+ Developed bespoke analysis tools for clients

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
A Case Study

+ MWREvents has developed a new online events
planning platform - website and mobile apps

+ Their developers are of average quality
+ No in—-house security experts

+ Want to find and fix all their security issues

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
How Do We Find Bugs?

Static Analysis
+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
How Do We Find Bugs?

Static Analysis
+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
How Do We Find Bugs?

Static Analysis
+ Analysing an application without executing it

+ Code review, binary analysis, reverse engineering

Dynamic Analysis

+ Analysing by monitoring and interacting with the
application as it executes

+ Fuzzing, tampering, functional testing

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
How Do We Code Review?

Manual
+ Give code to smart security experts

+ They read, understand and spot bugs

Automated
+ Pass code to tool

+ Tool parses code, hunts for known issues

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Code Review - Examples

void echo ()

{
char buf[8];
gets(buf):
printf("%s\n", buf):

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Code Review - Examples

webView.getSettings().setJavaScriptEnabled(true);

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Manual Code Review - The Downsides

+ Manual code review is expensive

~45 Million LOC ~86 Million LOC ~24 Million LOC

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
How Many Bugs Is That?

+ Steve McConnell (Code Complete) says 10-20 defects per 1000 lines of code

~675,000 bugs ~1,290,000 bugs ~360,000 bugs

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Static Code Analysis

Automated searching of source code for issues
+ Higher up front costs
+ ‘Free’ security once built and configured

+ Catch low hanging fruit automatically

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Computer Science Theory Ahead

To best use tools, you need to understand them.
+ Language types
+ Automata

+ Parsers

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Languages

+ “[A] set of strings of symbols that may be
constrained by rules that are specific to it

+ Defined by a grammar

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Chomsky’s Language Hierarchy

recursively enumerable

context-sensitive

context-free

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Chomsky’s Language Hierarchy

recursively enumerable

context-sensitive

context-free

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Regular Expressions

Regular expressions can parse any regular language

+ Act as a finite automata

+ List of states, list of transitions between them

+ Process input until accept or error state is reached

In practice, modern regexes are far more powerful than the
definition given here, but the key limitations remain

—” Bug Hunting with Static Code Analysis

++
Regular Expressions

not n not | not C

—” Bug Hunting with Static Code Analysis

++

Bug Hunting with Regular Expressions

Match code snippets that look like known problems

+

+

+

Quick and easy to write, so low cost

“Does my code match this very specific known issue?”

Bad imports
Calls to known dangerous functions

Known security misconfigurations

LABS

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Code Review - Examples
Code:
webView.getSettings () .setJavaScriptEnabled (true) ;
Regex:

‘setJavaScriptEnabled\ (true\)’

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Code Review - Examples
Code:
webVliew.getSettings () .setJavaScriptEnabled (true) ;
Regex:

‘setJavaScriptEnabled\ (true\)’

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: 3s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %ss', varl);

J

Regex:

‘printf\(.*\)’

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: 3s', varl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: ss', varl);

J

Regex:

‘printf\(.*\)’

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: %s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %s', wvarl);

J

Regex:

‘printf\(.*\)’

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Regular Expressions — Example

Code:
1f (DEBUG) {

printf ('Debug statement 1: %s', wvarl);
printf ('Other stuff: %ss', wvarl);
printf ('Finally: %s', wvarl);

J

Regex:

‘printf\(.*\)’

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Regular Expressions - The Disadvantages

Regular expressions can’t ‘count’
+ No way to maintain state

+ Cannot back trace

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Regular Expressions - The Disadvantages

Two options to check for debug guard:

+ Check backwards line by line until you reach
beginning of file - inefficient

+ Check X many previous lines - lots of false positives

Three alerts generated for the same missing guard

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Regular vs Context-Free Languages

+ Regular expressions only match regular languages*

+ Programming languages usually context-free

*mostly

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Chomsky’s Language Hierarchy

recursively enumerable

context-sensitive

context-free

R

regular

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Context-Free Languages

+ Superset of regular languages

+ Anything that can be accepted by a pushdown
automata

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Pushdown Automata

+ Finite State Machines with stacks

+ Decide transition based on both input and top of
stack

+ Can push/pop to stack as needed

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Pushdown Automata

nite
control | 0

Sstate

e el]

Input tape

MWR

_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Parsers

+ Converts text into a hierarchical data structure

+ Several different types, depending on what you’re
parsing

+ TL:DR: Construct a Parse Tree or Abstract Syntax
Tree (AST) from the source code

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Parsers

Two separate stages

+ Lexer splits input text into tokens (strings with an
understood meaning)

+ Parser constructs AST or similar from list of tokens

Can combine both - scannerless parsing

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Lexer Example

Code: Lexed Code:

if (DEBUG) 1f (DEBUG)

{ {
printf (..) ; printf (..);
printf (..); printf (..);
printf (..) ; printf (..);

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Lexer Example

Code: Lexed Code:

if (DEBUG) (DEBUG)

{ {
printf (..); printf (..);
printf (...); printf (..);
printf (..); printf (..);

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
1f (DEBUG)
{

printf (..);
printf (..);
printf (..);

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Parser Example

Code:
1f (DEBUG)
{

printf (..);
printf (..);
printf (..);

MWR

W

""4‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);

MWR

W

""4‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);

MWR

W

""4‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);

MWR

W

""4‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);

Printf() Printf()

MWR

W

""4‘ Bug Hunting with Static Code Analysis

++
Parser Example

Code:
if (DEBUG)
{

printf (..); Code Block

printf (..);
printf (..);

Printf() Printf()

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
We've got an AST, now what?

Basic:

+ Search AST for dodgy function calls, check for guards
+ Check for questionable imports

+ Same as before, fewer false positives

Advanced:
+ Control Flow Graphs (CFGs)

+ Taint Analysis

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Control Flow Graphs

‘a representation, using graph notation, of all paths that
might be traversed through a program”

+ Each basic block represented as a graph node
+ Jump targets start block, jumps end block

+ Jumps represented as directed edges

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Control Flow Graphs

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Why Should | Care About Control Flow Graphs?

+ Allows tracing of execution dependant on given inputs
without running the application

+ Trace data sinks back to original source

+ Data sanitized several function calls ago? Trace the
graph back and find it

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], S POST|[‘password’]):;

function login (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], S POST|[‘password’]):;

function logiln (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=' + Spassword + ‘;');

J

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], S POST|[‘password’]):;

function login (user, password) {

return login query(user, password);

function login query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], S POST|[‘password’]):;

function login (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], S POST|[‘password’]):;

function login (user, password) f{

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J

MWR

LABS

""1‘ Bug Hunting with Static Code Analysis

++
Why Should | Care About Control Flow Graphs?

Sresult

login ($ POST[‘user’], $ POST[‘password’]);

function login (user, password) {

return login query(user, password);

function logln query(user, password) {

return mysglli query('‘select * from user where
user="' + Suser + ' and password=‘' + Spassword + ‘;’);

J

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Parsers

Downsides:
+ Higher upfront cost to develop

+ More computationally intensive

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
The Bigger Picture

These tools all fit into a larger picture, all of which
needs to work together

+ Static code analysis
+ Manual code review
+ Fuzzing

+ Functional testing

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Case Studies

Two primary categories of people:

+ Bug hunters - security consultants, people doing
bug bounties or looking for O-days

+ Developers - people building applications who care
about security

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
I’'m a bug hunter, why do | care?

+ Target identification - pick a project to go after
+ Find low hanging fruit

+ ldentify ropey parts of the codebase

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Target Identification

+ Download source for a bunch of projects

+ Run analyser on all of them, look at the outputs

—” Bug Hunting with Static Code Analysis

++

Target Identification - Example

OpenSSL

LibreSSL

GnuTLS

mbedTLS

Flawfinder

1794

1389

1228

1381

MWR

LABS

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Target Identification - Example

./src/pkecs11.c:871: [4] (buffer) strcpy: Does not check
for buffer overflows when copying to destination.
Consider using strncpy or strlcpy (warning, strncpy is
easily misused).

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Low Hanging Fruit

+ SQL Injection
+ XSS
+ Buffer Overflows

+ Some Use after Frees

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Low Hanging Fruit

SQL Injection, XSS, Buffer Overflows

+ Look for data sinks - SQL queries, user-provided
data rendering etc

+ Trace input to data sinks back up CFG to source

+ If no sanitisation on user-provided data, probably
an attack vector

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Low Hanging Fruit

Use after frees
+ Track allocation/deallocation of pointers through CFG

+ UAF where pointer referenced after deallocation

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Example Tools

+ Flawfinder (C/C++)

+ Graudit (ASP/C/.NET/JSP/Perl/PHP/Python)
+ Find Security Bugs (Java, FindBugs Plugin)
+ RATS (C/C++/Perl/PHP/Python)

+ RIPS (PHP)

+ Brakeman (Ruby/Rails)

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Example Libraries/Platforms

For building your own:

+ Clang Analyzer

+ PLY and libraries that build on it (PLY] for Java)
+ Pyparsing

+ ANTLR

+ Coco/R

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
What will we be covering?

+ The problem of applications security
+ Regular Expressions

+ Parsers

+ Control Flow Graphs

+ Case study: bug hunter

+ Case study: software developer

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Static Analysis for Developers

+ Catch security issues before the penetration tests
+ One developer builds it, everyone can use it

+ Can be built into existing toolchains and
development lifecycles

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Static Analysis and Cl

+ CI: Continuous Integration

+ Continuously integrating new features as they’re
developed

+ Periodic automated compilation and testing

—” Bug Hunting with Static Code Analysis

++
Cl Tooling Examples

+ Hudson

+ Jenkins

w
fts

+ Travis CI Visual Studio'
Team Foundation Server
+ Bamboo

+ Team Foundation Server

MWR
_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Cl Workflow

+ Developer checks in code
+ Server compiles code

+ Test suites are automatically run

MWR

_|‘ Bug Hunting with Static Code Analysis LI\ Bs

++
Cl Workflow

enkins EEEE N

robot EMABLE AUTC REFRESH

Jenkins

Project robot

! Back to Dashboard
L Status

o [fadd description
= Changes | Disable Project
Robot Framework Tests Trend (all tests)

i Workspace

Build MNow = Zoom

Configure
Robot Results
M Passed
M Failed

Latest Test Result (no failures)

Mumber of testcases

(trend)

. 96:16 PM Latest Robot Results: . -

%

013 2:24:49 PM Total Failed Passed Pass % Build number

:14:06 PM Critical tests 10 ‘ ‘ 10 IDEII.D
19437 PM All tests 10 10 100.0

#1 Aug 15 1 21:47 PM > Browse results
- o > Open smoke all report.html

A RSS for all) RSS for failures > Dpen smoke _all log.html

Permalinks

¢ Last build (£6), 20 hr ago
e Last stable build (£6), 20 hr ago
¢ Last successful build (#6), 20 hr ago

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Cl Advantages

+ Automated security testing
+ Catch issues as they are introduced to the codebase
+ Catch regressions in code before it hits production

+ Runs automatically, no developer interaction required

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Cl - Benefits

Case study - M&S data breach, Oct 2015

+ Developer error led to users being presented with
other people’s data on login

+ Personal details and partial card numbers exposed

+ Automated regression testing as part of Cl would
likely catch this

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Commercial Static Analysis Tools

+ Fortify
+ Checkmarx FDRTIFY(’ VERACOIDE

+ Klocwork 4 CHECKMARX

+ Veracode

+ Coverity

—” Bug Hunting with Static Code Analysis

++

Commercial Tools

Coverity® Connect

DASHBOARDS

Quality Advisor
Security Advisor
Test Advisor

ISSUES

All Newly Detected

All Untriaged

High Impact Outstanding
Low Impact Outstanding
Medium Impact Outstanding
My Newly Detected

My Outstanding

MNewly Fixed Defects
QOutstanding Defects
Qutstanding Security Risks

Qutstanding Test Rules Violatio. ..

Unassigned
coverity_gerrit
simonmarriott
spl_report
Recently Viewed

FILES

Covered By Tests

In Latest Snapshot
Uncovered By Tests
With Outstanding Issues
With Untriaged Issues

FUNCTIONS

Covered By Tests

High CCM (=15)

In Latest Snapshot
Uncovered By Tests
With Qutstanding Issues
With Untriaged Issues

COMPONENTS

All In Project

High Issue Density (=1)
With Outstanding Issues
With Untriaged Issues

CHECKERS

All In Project

OWNERS

All In Project

SNAPSHOTS

x

Find: overrun-buffer-arg

-

dave cid161026 =

Impac... | Statu... Count

Out-of-bounds
QOut-of-bounds acce
Qut-of-bounds acces
QOut-of-bounds access

Nut-nf-hnunds arcacs

1 of 37 issues selected

4

¥ Next 4 Previous &’ Highlight all

/dronezone_coverity/srvisimon1/Tmphiideocoreicd/interface/mmalivc/mmal_server.c
nmnaL_wul AT _pPUl L_pal aii_gcLu_cpay
mmal_worker_port_param_get *msg =
struct MMAL_CONTROL_SERVICE_T *control_service =
uint32_t component_handle = msg->component_handle;
uint32_t port_handle = msg->port_handle;

Show

tCpLY = 195,

reply.header = msg->header;

First Detected ¥~ Owner

Classificatio. .. Severity

(mmal_worker_port_param_get*)vchiq_header->data;
msg->header.control_service;

if (vchig_header->size == sizeof(mmal_worker_port_param_get_old)

reply.param =
else

r

1

msg->param;

7. cond_at_most: C

assignment:

gning:
int param_siz
/ pying poram and space

[CID 161026 (#1 of 1
19. overrun-buffer-:

(which evaluates to

errunning struct type MMAL_PARAMETER_HEADER_T of 8

memcby(érepiy.param,V&msg-ﬁparam, param_éize);
¥

vchiq_release_message (vchig_service, vchig_header);

reply.status = mmal_server_do_port_parameter_get(server,

ize, sizeof(reply.param)+sizeof(reply.space));

control_service, component_handle,

Action

Component

Interface
Interfac

Interface
Interface

Intarfara

Configuration Help =

Category

Memory - corruptions
Memory - corruptions
Memory - corruptions
Memory - corruptions

Mamnrv - rarrintinne
10f 1

0 using argument "param_size

port_handle,

if (reply.status == MMAL_SUCCESS && reply.param.id == MMAL_PARAMETER_VIDEO_DRM_PROTECT_BUFFER)

€d 1n the serv

manually.

v}

[the normal
=
,

We

int client_pid =

d deregister

control_service->client_pid;

mmal_server_handle_drm_protect_buffer(server, &reply, client_pid);

3
J

send_reply (vchiq_service, &reply, MMAL_OFFSET(mmal_worker_port_param_get_reply, param) + reply.param.size);

[] Match case

&reply);

Simon Marriott v

161026 Out-of-bounds access

In worker: Out-of-bounds access to a buffer (CWE-119)

Classification:
Severity:
Action:

Ext. Reference:

Owner:

Apply + Next

Occurrences

History

Unclassified >
Unspecified

Undecided

dsteve@ad.broadcom.com ¥

Apply

Information

In ~~ dave_vc4_sdb_jb

Events contributingto i

17. cond_at_most

mmal_server.c:1114

mmal_server.c:1114

MW

ABS

MWR

LABS

—” Bug Hunting with Static Code Analysis

++
Where Security Expertise Can Help

+ ldentifying where security risks are likely to lie in
their codebase

+ Writing custom rules for existing static analysis
engines

+ Developing bespoke analysis tools

+ Advising on integrating automated security testing
into development lifecycles

MWR

_|‘ Bug Hunting with Static Code Analysis LI\ BS

++
Conclusions

+ Static analysis can provide low-cost security checks
once configured

+ ASTs and CFGs let you do all kinds of awesome
things

+ Automated code analysis complements traditional
manual assessments

MWR
—I‘ Bug Hunting with Static Code Analysis LI\ BS

Thanks for listening!

Questions?

