

2010-06-02 Page 1 of 12
© MWR InfoSecurity Brave New 64-Bit World

Brave New 64-Bit World

An MWR InfoSecurity

Whitepaper

2nd June 2010

 Abstract

2010-06-02 Page 2 of 12
© MWR InfoSecurity Brave New 64-Bit World

Abstract

Memory requirements on server and desktop systems have risen considerably over
the past few years, to the point where 32-bit architectures are not capable of
addressing the required amount of memory. A variety of 64-bit CPUs and operating
systems have been introduced to resolve this architecture imposed limitation and
these are now being widely adopted. However, any porting of software to 64-bit
compatibility can have unexpected security implications, even without any code
changes in the programs, drivers or operating systems. This is particularly dangerous
in situations where code has already been subject to code review and been assessed
to be free from exploitable vulnerabilities in a 32-bit environment as it could
immediately become vulnerable when compiled on a 64-bit system. Consequently, it
is important that there is an appreciation of the security implications of the porting
process and that appropriate security reviews are conducted. This whitepaper
discusses the most common problems associated with code running on 64-bit
systems, their impact on the security of systems and methods for preventing them.

 Contents

2010-06-02 Page 3 of 12
© MWR InfoSecurity Brave New 64-Bit World

Contents

1 Introduction ... 4

2.1 Large Input .. 5

2.1.1 Large amount of data is required to trigger the vulnerability 5

2.1.2 Large allocation has to succeed to trigger the vulnerability 6

2.2 Truncation in Conversion From long to int ... 6

2.2.1 Comparison of value types and sizes 6

3 Proof of Concept Examples ... 8

3.1 Sendmail 8.14.4 str_union Vulnerability .. 8

4 Recommendations .. 10

5 Conclusion .. 11

 Introduction

2010-06-02 Page 4 of 12
© MWR InfoSecurity Brave New 64-Bit World

1 Introduction

With the wide availability of x64 CPUs, many organisations are now switching to 64-
bit operating systems and applications. This is driven by the increasing memory
requirements of applications and servers, the decreasing cost of the new hardware
and what is now wide support within applications and operating systems.

When code reviews are conducted of C/C++ applications which were developed on
32-bit systems and then ported to 64-bit, certain classes of security vulnerability are
commonly identified. A number of these classes of vulnerability are discussed within
this document.

It should be noted that these classes of vulnerability are not new and similar issues
have been found and exploited before. However, the migration to 64-bit technology
is regularly leaving organisations exposed to risk, particularly when there is a
reliance on security reviews and assurance activities performed previously on a
different architecture.

 Vulnerability Concepts

2010-06-02 Page 5 of 12
© MWR InfoSecurity Brave New 64-Bit World

2 Vulnerability Concepts

2.1 Large Input

On 32-bit systems the amount of possible input to an application is naturally limited
by the available address space. For example, on Microsoft Windows systems
memory allocations in user-mode are usually less than 2 gigabytes in size. In reality,
however, the space available for memory allocations on 32-bit systems will be much
less, as space will be reserved for binaries, stacks and heaps. Nevertheless, this can
still be more than 2 gigabytes when the /3GB switch is used during booting, although
this is not the default setting.

However on 64-bit systems these limits are greatly increased and allocation of much
larger memory blocks may be possible. This is especially true on server systems, but
is increasingly common on desktop systems, where at least 2 GB of RAM is common
nowadays (or at least enough virtual memory space is available for these allocations).

Whilst good practice dictates that the size of any data passed to a function is
checked it is often the case that developers make assumptions about the maximum
possible size of that data - and these assumptions could be based on the upper limit
for a memory allocation on the platform itself. When transferred to a 64-bit system
these deviations from best practice can become exploitable if an attacker can
introduce large amounts of data into the application. Examples of such issues are
integer overflows or integer sign vulnerabilities.

During code reviews two scenarios are commonly encountered:

2.1.1 A vulnerability can be triggered by a large amount of data

Code Example 1:
 0: unsigned int len = strlen(input);

 1: unsigned int size = len+1;

 2: char *buf = malloc(size);

 3: memcpy(buf, input, len);

In the example above there is an integer overflow vulnerability on line 1 which
could result in too small an allocation occurring on line 2. This could in turn cause a
heap buffer overflow when line 3 executes as the memory allocation would be
smaller than the size of the data. On 32-bit systems this code would not be
exploitable because of the limit imposed on the maximum size of the input data by
the architecture itself. However, on 64-bit systems where up to 0xffffffff bytes of data
can be introduced this could be exploitable.

 Vulnerability Concepts

2010-06-02 Page 6 of 12
© MWR InfoSecurity Brave New 64-Bit World

2.1.2 Large allocation has to succeed to trigger the vulnerability

Code Example 2 (fictional image parsing code):
 0: int width = readint();

 1: int height = readint();

 2: unsigned long size= width * height;

 3: if(height > 1) {

 4: char *buf = malloc(size);

 5: int pos = 0;

 6: if(buf) {

 7: char row[BUFSIZE];

 8: if(width < sizeof(row)) memcpy(row, input+pos, width);

 9: ...

 10: }

 11: }

The example code above is vulnerable to a stack-based buffer overflow on line 7 as a
result of a sign issue with the ‚width‛ variable. On a 32-bit system the exploitable
condition that only occurs when ‚width‛ is greater than 0x7fffffff will never be
reached, as the allocation on line 4 will fail. However, on 64-bit systems this
example is exploitable as larger allocations are possible and thus the vulnerable code
on line 8 can be reached.

2.2 Truncation in Conversion From ‘long’ to ‘int’

On 32-bit systems, the value types ‘unsigned int’, ‘long’ and ‘size_t’ can be used
interchangeably; however on 64-bit systems these value types are not equivalent. In
situations where these have not been used in the correct manner exploitable
conditions can exist.

2.2.1 Comparison of value types and sizes

The following table shows the sizes in bits of different value types on 32-bit and 64-
bit systems (assumes C code compiled with the GCC compiler).

Type 32-bit GCC 64-bit GCC

Char 1 1

Short 2 2

Int 4 4

Long 4 8

size_t 4 8

long long 8 8

The use of ‚int‛ is not an appropriate choice for variables which represent data sizes,
lengths and offsets on 64-bit systems as it cannot represent all possible values.
However, it is known from observations made during code reviews that ‚int‛ is the
most commonly used type for these values. On 32-bit systems this is not a problem
as ‚int‛ and ‚size_t‛ are equivalent; however, on 64-bit systems problems will arise

 Vulnerability Concepts

2010-06-02 Page 7 of 12
© MWR InfoSecurity Brave New 64-Bit World

which could result in vulnerabilities being present. The following C code snippet
illustrates how code can be secure on a 32-bit system but vulnerable when compiled
on a 64-bit system.

Code Example 3:
0: void example(char *input) {

1: char buffer[1024];

2: unsigned int length = strlen(input);

3: if(length<sizeof(buffer)) {

4: strcpy(buffer, input);

5: }

6: }

The ‚strlen‛ function returns a length value of type ‚size_t‛ which is then assigned to
an ‚int‛ type. This assignment can lead to a truncation of the return value. For
example, a return value of 0x100000010 will be truncated to the ‚int‛ value 0x10.
This would result in the check being passed and a very large string being copied to
the stack-based buffer, resulting in a potentially exploitable condition.

 Proof of Concept Examples

2010-06-02 Page 8 of 12
© MWR InfoSecurity Brave New 64-Bit World

3 Proof of Concept Examples

3.1 Sendmail 8.14.4 str_union Vulnerability

MWR InfoSecurity have researched this topic further and one of the findings was that
the current Sendmail implementation is vulnerable to a bug which requires very
large input to be stored in memory. The ‚str_union‛ function is used in the
usersmtp.c file to concatenate the values of multiple authentication responses during
the extended ‚hello‛ process of an SMTP conversation. The allocation of memory for
the resulting string is implemented as follows:

usersmtp.c
0: str_union(s1, s2, rpool)

1: ...

2: {

3: int l1, l2, rl;

4: ...

5: l1 = strlen(s1);

6: l2 = strlen(s2);

7: rl = l1 + l2;

8: res = (char *) sm_rpool_malloc(rpool, rl + 2);

9: if (res == NULL)

10: {

11: if (l1 > l2)

12: return s1;

13: return s2;

14: }

15: (void) sm_strlcpy(res, s1, rl);

16: ...

As can be seen from the code ‚s1‛, which is the result of previous concatenations,
could theoretically grow indefinitely. Although the length of each response line is
limited, the number of auth response lines is not. As a consequence an attacker
could make the signed integers on lines 5 or 7 wrap, resulting in the allocation made
on line 8 being too small and so in turn leading to a heap buffer overflow on line 15
or later in the code.

An attacker could make a vulnerable Sendmail server connect back to a malicious
SMTP server by sending an email to the domain hosting the malicious server; the
vulnerability could then be triggered by sending an "EHLO" response of the following
form to the target server:

250-local.sendmail.ORG Hello localhost [127.0.0.1], pleased to meet you

250-AUTH XXXXXXX..XXXX1

250-AUTH XXXXXXX..XXXX2

250-AUTH XXXXXXX..XXXX3

.... a few million of these lines

250 HELO

Fortunately (or unfortunately, from the perspective of an attacker) this vulnerability is
not currently exploitable on Sendmail due to a memory leak when str_union is used:

 Proof of Concept Examples

2010-06-02 Page 9 of 12
© MWR InfoSecurity Brave New 64-Bit World

usersmtp.c
0: mci->mci_saslcap = str_union(mci->mci_saslcap,

 p, mci->mci_rpool);

This call to the vulnerable function will leak the previous string for each call to it and
thus Sendmail will run out of memory long before reaching the exploitable integer
overflow.

Even though it is very unlikely that this vulnerability could be exploited on real
systems, the Sendmail developers have provided a patch which can be downloaded
from: -

http://www.sendmail.org/patches/auth.2

 Recommendations

2010-06-02 Page 10 of 12
© MWR InfoSecurity Brave New 64-Bit World

4 Recommendations

Migration Process

As the example in this whitepaper shows, the migration of software from 32-bit to
64-bit systems can introduce new vulnerabilities, or make previously unexploitable
vulnerabilities exploitable. Consequently, it is recommended that the migration
process should always include a code review during which the focus should be
placed on security. As we have seen, the assumptions made by programmers and
used in previous code reviews may not hold true.

Code Review Process

Given the fact that applications may already have been subject to security review it
is important that reviewers and security consultants are aware of the specific issues
that can be manifested when migrating code. A detailed discussion on the topics of
memory corruption vulnerabilities or code review techniques is beyond the scope of
this whitepaper; however, the following recommendations are made to provide
general guidance about identifying and resolving the types of issues which could be
expected to be encountered.

1. Are there any size limits on incoming data? If not, it is very likely that the code

handling the incoming data is flawed or that the functions using the input
afterwards will not be coded so as to handle the data in a safe manner.
Reallocation operations in network applications have proven to be particularly
vulnerable (as in the Sendmail example above). In many scenarios, limiting the
input data to prevent excessive amounts of memory being allocated is a
reasonable control to enforce.

2. Review any usage of ‚int‛ types for length, offset and size values. Any use of a 32-

bit integer for these kinds of values should be investigated as it is expected that
the code will be flawed in the great majority of cases. If code is found to be
affected by this issue, then each instance will need to be evaluated to determine
the impact. Developers may wish to review the use of "int" in their application as
a whole, and use safer types such as "long" or preferably "size_t".

3. When code is first compiled for a 64-bit platform, it is important that special

attention is paid to any compiler warnings, especially those concerning truncation
and casting of integer types. These can often indicate bugs which might be
exploitable.

 Conclusion

2010-06-02 Page 11 of 12
© MWR InfoSecurity Brave New 64-Bit World

5 Conclusion

MWR InfoSecurity have observed that the widespread introduction of 64-bit
platforms and the consequent porting of 32-bit applications can expose several types
of problem. As servers and desktops are equipped with more memory previously
unexploitable vulnerabilities may become exploitable.

In addition to this, the increase in bandwidth available to individuals facilitates the
exploitation of these types of vulnerability without the need to use any form of
compression. On a 20Mbit upstream DSL line it will only take about half an hour to
send 4 gigabytes of data. Given the potential rewards, this is not an excessive
amount of time to wait to gain full access to a vulnerable application.

Local application or kernel vulnerabilities which require large amounts of memory
are even more likely to be exploited, as allocating and filling 4 gigabytes of memory
will only take seconds on modern systems. With the growing amount of memory
available in modern servers and desktops other types of attack might also become
feasible, attacks such as the overflowing of 32-bit reference counters, even without
any reference leaks.

 Error! No text of specified style in document.

2010-06-02 Page 12 of 12
© MWR InfoSecurity Brave New 64-Bit World

MWR InfoSecurity
St. Clement House
1-3 Alencon Link

Basingstoke, RG21 7SB
Tel: +44 (0)1256 300920
Fax: +44 (0)1256 844083

mwrinfosecurity.com

