

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
1

Bluetooth Pairing
Authentication Bypass
12/04/2016

Software Android Open Source Project (AOSP)

Affected Versions 4.2.0 - 4.4.4, 5.0.0 - 5.1.1, 6.0.0 – 6.0.1

CVE Reference CVE-2016-0850

Author Romain Trouvé

Severity High

Vendor Google

Vendor Response Patch Released

Description:

A vulnerability in Bluetooth Security Manager could enable an untrusted device to pair with a phone

during an initial pairing process. This could lead to unauthorized access of the device resources.

Impact:

An attacker would have access to a range of Bluetooth Profiles [1] compatible with the device such as the

HID Profile for the support of mice, keyboards or GAVDP Profile for relaying video/audio stream; some

require additional authorization. As proof of concept, an untrusted device was paired with the victim’s

phone and was then able to use the Bluetooth tethering feature to access the Internet connection.

Before the initial pairing authentication process times out, multiple devices can be paired in a row

without the user’s knowledge. The Bluetooth User Interface does not reveal the successful pairing(s) in

the paired devices list.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
2

Cause:

An untrusted device could abuse the Porsche car-kit pairing workaround to generate a reply to a legacy

pin code request during an initial pairing process.

Solution:

Google have released a security update through an over-the-air (OTA) update as part of its Android

Security Bulletin Monthly Release process. Please refer to the Nexus Security Bulletin - April 2016 [2].

The Porsche car-kit pairing workaround has been removed. (Change-Id:

I14c5e3fcda0849874c8a94e48aeb7d09585617e1)

Technical details:

Since Android 4.2, Android Open Source Project has switched its Bluetooth stack from BlueZ to

BlueDroid. To work around a Porsche car-kit pairing conflict, some conditional compilation code had

been added in the Bluetooth Security Manager.

Defined within PORCHE_PAIRING_CONFLICT, the workaround affected the btm_sec_pin_code_request()

function which is called when the controller requests a legacy PIN code.

1. Android 4.2 – 5.0.0 [3]

void btm_sec_pin_code_request (UINT8 *p_bda)

{

 tBTM_SEC_DEV_REC *p_dev_rec;

 tBTM_CB *p_cb = &btm_cb;

 ...

 if (btm_cb.pairing_state != BTM_PAIR_STATE_IDLE)

 {

 if ((memcmp (p_bda, btm_cb.pairing_bda, BD_ADDR_LEN) == 0) &&

 (btm_cb.pairing_state == BTM_PAIR_STATE_WAIT_AUTH_COMPLETE))

 {

 ...

 } else if ((btm_cb.pairing_state != BTM_PAIR_STATE_WAIT_PIN_REQ)

 || memcmp (p_bda, btm_cb.pairing_bda, BD_ADDR_LEN) != 0)

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
3

 {

 ...

#ifdef PORCHE_PAIRING_CONFLICT

 ...

 if(! btm_cb.pin_code_len_saved)

 {

 btsnd_hcic_pin_code_neg_reply (p_bda);

 }

 else

 {

 btm_sec_change_pairing_state (BTM_PAIR_STATE_WAIT_AUTH_COMPLETE);

 btsnd_hcic_pin_code_req_reply (p_bda, btm_cb.pin_code_len_saved, p_cb-

>pin_code);

 }

#else

 btsnd_hcic_pin_code_neg_reply (p_bda);

#endif

 return;

 }

 ...

The PORCHE_PAIRING_CONFLICT workaround is accessible if the device is in a non-idle pairing state and

a mismatch occurs between p_bda and btm_cb.pairing_bda (both of which can be controlled by an

attacker).

 p_bda is the device MAC address currently pairing, responsible of the legacy pin code request

event.

 btm_cb.pairing_bda is the peer device MAC address, part of the changing pairing event.

From an attacker’s perspective, opening a first pairing process and then initiating a legacy pin code

pairing with a different MAC address will give access to the PORCHE_PAIRING_CONFLICT code.

The workaround included a branch to a legacy pin code reply. A saved pin code from a previously

successful legacy pairing should exist to trigger the reply. In this scenario, instead of asking the GUI

plugin agent for a pin, the saved pin_code is re-used in response to a legacy pin code request.

Performing an online pin code guessing/bruteforce attack would lead to a complete and unauthorized

pairing.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
4

2. Android 5.0.0 and later

From KitKat to Lollipop (Android 5.0.0), the following patch has been merged with the AOSP Bluetooth

stack:

- Change-Id: I67b2e689cfcc52c93fdda62dd742812698baa0e6 [4] committed on Apr 17, 2013 and

merged on Mar 25, 2014

diff --git a/stack/btm/btm_sec.c b/stack/btm/btm_sec.c

index 8bcf435..1e15d78 100644

--- a/stack/btm/btm_sec.c

+++ b/stack/btm/btm_sec.c

@@ -4774,6 +4774,10 @@

 tBTM_SEC_DEV_REC *p_dev_rec;

 tBTM_CB *p_cb = &btm_cb;

+#ifdef PORCHE_PAIRING_CONFLICT

+ UINT8 default_pin_code_len = 4;

+ PIN_CODE default_pin_code = {0x30, 0x30, 0x30, 0x30};

+#endif

 BTM_TRACE_EVENT3 ("btm_sec_pin_code_request() State: %s, BDA:%04x%08x",

 btm_pair_state_descr(btm_cb.pairing_state),

 (p_bda[0]<<8)+p_bda[1],

(p_bda[2]<<24)+(p_bda[3]<<16)+(p_bda[4]<<8)+p_bda[5]);

@@ -4807,7 +4811,8 @@

 BTM_TRACE_EVENT0 ("btm_sec_pin_code_request from remote dev. for local

initiated pairing");

 if(! btm_cb.pin_code_len_saved)

 {

- btsnd_hcic_pin_code_neg_reply (p_bda);

+ btm_sec_change_pairing_state (BTM_PAIR_STATE_WAIT_AUTH_COMPLETE);

+ btsnd_hcic_pin_code_req_reply (p_bda, default_pin_code_len,

default_pin_code);

 }

 else

 {

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
5

This patch introduced a hard-coded pin code {0x30, 0x30, 0x30, 0x30} i.e. 0000. In the event of no

existing saved pin_code, the device would use the hard-coded pin to generate a reply to a legacy pin

code request. This would lead to an unauthorized pairing in response to a legacy pin code 0000.

Detailed Timeline

Date Summary

2016-01-13 Reported to Android Open Source Project (AOSP) Issue Tracker

2016-01-13 Report acknowledged by Google

2016-01-21 Technical details reviewed by The Android Security Team and Severity set

2016-02-24 Google informed to release a patch in an upcoming bulletin

2016-04-04 Nexus Security Bulletin (April 2016) Published

[1] https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx

[2] https://source.android.com/security/bulletin/2016-04-02.html

[3] https://android.googlesource.com/platform/external/bluetooth/bluedroid/

+/android-4.2_r1_

[4] https://android-review.googlesource.com/#/c/88928/

https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx
https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/android-4.2_r1_
https://android.googlesource.com/platform/external/bluetooth/bluedroid/+/android-4.2_r1_
https://android-review.googlesource.com/#/c/88928/

