

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
1

Screen Capture via UI
Overlay in MediaProjection
13/11/2017

Software Android Open Source Project (AOSP)

Affected

Versions

5.0 to 7.1.2

CVE Reference N/A

Author Amar Menezes

Severity High

Vendor Google

Vendor Response Patched in Android 8.0

Description:

Google introduced the MediaProjection service to the Android Framework in Android 5.0. This gave Android

application developers the ability to capture screen contents and/or record system audio. Prior to android 5.0

application developers required their application’s to run with root privileges or sign their applications with the

device’s release keys in order to use system protected permissions to capture screen contents.

With MediaProjection, application developers no longer need root privileges, nor do they require to sign their

applications with the device’s release keys. Furthermore, there are no permissions that are required to be

declared in the AndroidManifest.xml in order to use the MediaProjection service.

To use the MediaProjection service, an application would simply have to request access to this system Service

via an Intent. Access to this system Service is granted by displaying a SystemUI pop-up that warns the user that

the requesting application would like to capture the user’s screen.

It was discovered that an attacker could overlay this SystemUI pop-up which warns the user that the contents of

their screen would be captured, with an arbitrary message to trick the user into granting the attacker’s

application the ability to capture the user’s screen.

Impact:

This vulnerability would allow an attacker to capture the user’s screen should the user tap on the SystemUI pop-

up that has been overlayed by the attacker with an arbitrary message.

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
2

The lack of specific android permissions to use this API makes it harder to determine if an application uses the

MediaProjection service.

This vulnerability is particularly severe since the SystemUI pop-up is launched within the context of the

attacker’s application making it possible for an attacker to detect the pop-up and draw an overlay without the

user noticing.

Cause:

The primary cause of this vulnerability is due to the fact that affected Android versions are unable to detect

partially obscured SystemUI pop-ups. This allows an attacker to craft an application to draw an overlay over the

SystemUI pop-up which would lead to the elevation of the application’s privileges (i.e. would allow it to capture

the user’s screen).

Furthermore, the SystemUI pop-up is the only access control mechanism available that prevents the abuse of the

MediaProjection service. An attacker could trivially bypass this mechanism by tapjacking this pop-up using

publicly known methods to grant their applications the ability to capture the user’s screen.

Interim Workaround:

This vulnerability has currently only been patched in Android 8.0. However, due to the issue of version

fragmentation within the Android ecosystem, there are a number of Android devices that can’t upgrade to

Android 8.0 or no longer receive updates from device vendors that would still be vulnerable. According to the

Android developer dashboard as of 02-Oct-17, approximately 77.5% of active android devices are still vulnerable

to this particular attack[1].

However, this attack is not entirely undetectable. When an application gains access to the MediaProjection

Service, it generates a Virtual Display which activates the screencast icon in the notification bar. Should users

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
3

see a screencast icon in their devices notification bar, they should investigate the application/process currently

running on their devices. An example of which is shown below:

Solution:

This vulnerability has been addressed in Android 8.0 and Android users are advised to update to Android 8.0. It is

unclear if Google plans to release a patches for older affected versions of Android. However, should a security

patch for older affected versions of Android be released at a later date, users should update their devices.

Android application developers can defend against this attack by enabling the FLAG_SECURE layout parameter

via the application's WindowManager. This would ensure that the content of the applications windows are

treated as secure, preventing it from appearing in screenshots or from being viewed on non-secure displays. An

example of how the FLAG_SECURE parameter could be added to an applications Activities is shown below:

public class ApplicationActivity extends AppCompatActivity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 getWindow().setFlags(LayoutParams.FLAG_SECURE,

 LayoutParams.FLAG_SECURE);

 /* application code follows */

 }

}

Technical details

In order to use the MediaProjection service an application developer would create a MediaProjectionManager

instance that connects to the system service MEDIA_PROJECTION_SERVICE. An example of which is shown below:

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
4

mProjectionManager = (MediaProjectionManager)

getSystemService(Context.MEDIA_PROJECTION_SERVICE);

Once a MediaProjectionManager object has been instantiated the application developer would then generate an

Intent to request for screen capture permission. An example of which shown below:

int REQUEST_CODE = 1000;

startActivityForResult(mProjectionManager.createScreenCaptureIntent(), REQUEST_CODE);

Launching this Intent triggers the SystemUI pop-up that warns the user of the application that all activity on

their screen is going to be recorded. The following screenshot is an example of this pop-up:

The user’s response to this pop-up can be detected using onActivityResult function. A typical example of which

is shown below:

public void onActivityResult(int requestCode, int resultCode, Intent data) {

 mMediaProjectionCallback = new MediaProjectionCallback();

 mMediaProjection = mProjectionManager.getMediaProjection(resultCode, data);

 mMediaProjection.registerCallback(mMediaProjectionCallback, null);

 mVirtualDisplay = createVirtualDisplay();

 mMediaRecorder.start();

 }

Application developers can reliably control the UI feedback loop since the application developer controls when

the intent is launched to generate the SystemUI pop-up and can detect user supplied input to this pop-up within

the onActivityResult(). An attacker could leverage this to draw an overlay over the SystemUI pop-up.

In order to do that an attacker would have to first draw an overlay before launching the Screen Capture intent.

An example of how this could be achieved is shown in the snippet below:

int REQUEST_CODE = 1000;

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
5

showOverlay();

startActivityForResult(mProjectionManager.createScreenCaptureIntent(), REQUEST_CODE);

Where showOverlay() is an attacker defined function which draws an overlay over the SystemUI pop-up. This

function retrieves a reference to the WindowManager for the current application, defines

WindowManager.LayoutParams that configures the behaviour of the View. The function implementation ends by

adding the View containing the overlay to the Window manager. The following snippet shows a typical

implementation of showOverlay():

void showOverlay() {

WindowManager windowManager = (WindowManager)

getApplicationContext().getSystemService(WINDOW_SERVICE);

WindowManager.LayoutParams layoutParams = new WindowManager.LayoutParams(

WindowManager.LayoutParams.TYPE_SYSTEM_ERROR,

 WindowManager.LayoutParams.FLAG_FULLSCREEN

 | WindowManager.LayoutParams.FLAG_NOT_TOUCH_MODAL

 | WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE

 | WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE

 | WindowManager.LayoutParams.FLAG_HARDWARE_ACCELERATED

);

mOverlay = View.inflate(getApplicationContext(), R.layout.overlay, null);

windowManager.addView(mOverlay, layoutParams);

}

Defining the WindowManager.LayoutParams.TYPE_SYSTEM_ERROR as part of the Layout Parameters ensures that

the overlay is the topmost UI component within the devices UI stack. This allows an attacker the ability to

overlay any SystemUI component. In this case the attacker would be able to overlay the SystemUI pop-up with

an arbitrary message. An example of which is shown below:

In order to draw overlays and use the Layout Parameter, WindowManager.LayoutParams.TYPE_SYSTEM_ERROR,

an attacker would have to define android.permission.SYSTEM_ALERT_WINDOW in AndroidManifest.xml

Security Advisory

labs.mwrinfosecurity.com // @mwrlabs
6

Should an attacker succeed in getting the user to tap on ‘START NOW’, the attacker’s application would now be

able to capture the user’s screen.

Detailed Timeline

Date Summary

2017-01-07 Issue reported to Google

2017-02-07 Google’s initial severity assessment rates it as High

2017-05-08 Update from Google that a fix is in progress

2017-08-21 Google releases Android 8.0 which patched this vulnerability

2017-10-21 MWR requested an update on patches for Android 7.1.2 to 5.0

2017-11-01 Google was informed that Advisory would be released

2017-11-13 Public disclosure of vulnerability and technical blog post

