

http://labs.mwrinfosecurity.com

PROTECTIVE MARKING

PROTECTIVE MARKING 1

Partial-Authentication Bypass
30/12/2015

Software: Threat Intelligence Manager (TIM)

Affected Versions: V1

CVE Reference: Not Yet Assigned

Author: Benjamin Harris - MWR Labs (http://labs.mwrinfosecurity.com/)

Vendor: Trend Micro

Vendor Response: Will not fix

Description

The Trend Micro Threat Intelligence Manager (TIM) is made up of 2 web interfaces. One that listens externally on

port 80 (PHP), and one that, while listens externally, only allows requests from localhost on port 8080 (JSP). The

user would authenticate only to the PHP interface, and the application would then internally forward the

authentication request to the JSP interface and assign valid session IDs for both interfaces. Only the PHP

interface session ID is exposed to the user in the form of PHPSESSID cookie, whereas the JSP interface session ID

is added as a value to your PHP session ID with the key ‘session_key’.

Through the abuse of inbuilt functionality, it was possible to generate a session that appears to be a valid

authenticated session for the PHP interface only, without any information with regards to credentials.

This functionality can be abused with any of the following two requests:

1.

https://HOST/widget_framework2/index.php?src=svrrender&jsession=a

2.

POST /middleware_rev/handlers/base64ToImg/baseToImg.php HTTP/1.1

Host: HOST

User-Agent: Mozilla/5.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-GB,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: PHPSESSID=mwrlabz; statusbarcollapsed=0

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 48

https://host/widget_framework2/index.php?src=svrrender&jsession=a

http://labs.mwrinfosecurity.com

PROTECTIVE MARKING

PROTECTIVE MARKING 2

method=set&name=system&base64[session_key]=a

Impact

This allows authentication to be partially bypassed, allowing access to certain functionality that would normally

be only allowed to authenticated users.

However, an unauthenticated attacker can achieve arbitrary PHP code execution by chaining other TIM

vulnerabilities discovered together with this vulnerability, in this sequence:

1. Access to authenticated functionality by an unauthenticated user (this advisory)

2. Write an arbitrary `Proxy.php` file to the local TEMP file directory [1]

3. Execute arbitrary code in `Proxy.php` as ‘NT AUTHORITY/SYSTEM’ by traversing to TEMP directory [1]

Solution

It is recommended that access to the management interface of Trend Micro’s Threat Intelligence Manager is

heavily restricted as no patch is/will be available.

Trend Micro’s official response to this vulnerability can be found as follows:

“Thank you for your patience and continuously working with the Trend Micro Vulnerability Response team.

The Trend Micro Threat Intelligence Manager (TIM) has reached its end-of-life, and unfortunately addressing the
vulnerabilities you submitted would require substantial efforts to re-architect or build an entirely new product. We
strongly recommend our TIM customers to contact sales for further options on a suitable replacement if this is a
concern for them.”

Technical details

Authentication is handled by a library called MWLib within the Trend Micro codebase. This library is called within

the application by requesting the `getInstance()` function, and takes a boolean argument to perform

authentication.

public static function getInstance($auto_login = true)

If `$auto_login` is true, then we move on to this code area:

 if ($auto_login == true) {

 // Bypass authentication for Report usage

 if (isset($_REQUEST['src']) && strcasecmp($_REQUEST['src'],

'svrrender') == 0 && isset($_REQUEST['jsession'])) {

http://labs.mwrinfosecurity.com

PROTECTIVE MARKING

PROTECTIVE MARKING 3

 $ret = self::$instance->bypass($_REQUEST['jsession']);

 } else {

 $username = (isset($_POST['username'])) ?

$_POST['username'] : '';

 $password = (isset($_POST['password'])) ?

$_POST['password'] : '';

 $sessionsetting = (isset($_POST['sessionsetting'])) ?

$_POST['sessionsetting'] : 'public';

 $ret = self::$instance->login($username, $password, null,

$sessionsetting);

 }

Within this area of code, the `login()` function is called as defined by MWLib. This function is defined as

following:

protected function login($username, $password, $HttpRequest, $sessionsetting)

Among the arguments it takes, the function requires the `$username` and `$password` variables. However,

before checking these variables, the library looks to see whether the user is already logged in within the

‘bypass()’ function by checking for the existence of a `$_SESSION` array key, specifically

`$_SESSION[‘system’][‘session_key’]`. If this array key exists and is set, the application assumes the user is

already authenticated and does not check the variables again.

 // check login

 $ret = $session_package->isset_system_var('session_key');

 if ($ret == true) return 0; // login success

From here, there are two ways to bypass the session authentication.

Partial-Authentication Bypass 1

Specifically, within the `getInstance()` function of the MWLib (authentication) library, if

`$_REQUEST[‘src’]` is set to `svrrender` and `$_REQUEST[‘jsession’]` is set to arbitrary value, then the

`bypass()` function is called instead of the `login()` function.

 if (isset($_REQUEST['src']) && strcasecmp($_REQUEST['src'],

'svrrender') == 0 && isset($_REQUEST['jsession'])) {

 $ret = self::$instance->bypass($_REQUEST['jsession']);

This function takes and uses a JSESSION identifier to query the JSP interface listening on port 8080. As the valid

identifier is unknown, this will never work, however before that, the function assigns the value of

`$_REQUEST[‘jsession’]` to the array key `$_SESSION[‘system’][‘session_key’]`.

http://labs.mwrinfosecurity.com

PROTECTIVE MARKING

PROTECTIVE MARKING 4

 // save session key

 $ret = $session_package->set_system_var('session_key', $jsession);

 if ($ret != 0) {

 if ($this->logger) $this->logger->log(ZG_LOG_CRIT, '', "($ret)

set_system_var('session_key', $session_key)");

 return -4;

 }

This allows us to meet all criteria to appear authenticated, if we pass all the required parameters to a file that

calls `getInstance()` within the MWLib library with `$auto_login` set to `true` (which is default).

Partial-Authentication Bypass 2

If an attacker is able to send a valid `$_SESSION[‘system’][‘session_key’]` in the request because the

`$_SESSION` array is stored in the `/middleware_rev/handlers/base64ToImg/baseToImg.php` file in the web

root of the PHP interface, and allows arbitrary read/write of the `$_SESSION` array keys and values.

<?php

 session_start();

 if(isset($_POST["method"])){

 if($_POST["method"] == "set"){

 if(isset($_POST["base64"]) && isset($_POST["name"]) && $_POST["name"]

!= ""){

 $_SESSION[$_POST["name"]]= $_POST["base64"];

 }

 }

 }else if(isset($_GET["method"])){

 if($_GET["method"] == "get"){

 if(isset($_GET["name"]) && isset($_SESSION[$_GET["name"]])){

 $data = split(";", $_SESSION[$_GET["name"]]);

 $type = $data[0];

 $baseData = split(",", $data[1]);

 header("Content-type: ".$type);

 echo base64_decode($baseData[1]);

 }

 }

 }

?>

By setting the `session_key` key, an unauthenticated attacker would meet all criteria to appear

authenticated.

http://labs.mwrinfosecurity.com

PROTECTIVE MARKING

PROTECTIVE MARKING 5

Detailed Timeline

Date: Summary:

24/7/2015 Vulnerability documented

30/7/2015 Trend Micro contacted via security@trendmicro.com

31/7/2015 5 advisories sent to Trend Micro with provided PGP key

10/9/2015 MWR disclosure timeline requested due to internal discussions at Trend

Micro RE: remediation

20/10/2015 MWR request update from Trend Micro

12/11/2015 Trend Micro issue statement and request coordinated disclosure on 17th

November 2015

30/12/2015 MWR publish advisories.

Reference

[1] mwri-advisory_trendmicro-threat-intelligence-manager_arbitrary-code-execution_v3.pdf

