
Join the conversation #devseccon

By Nick Jones

Static Analysis for Code

and Infrastructure

The Problem

• Software developers make mistakes

• Mistakes = bugs = vulnerabilities

• Our goal is fewer bugs

Who Am I?

Nick Jones

• Security Consultant at MWR InfoSecurity

• Web application & infrastructure security

• Previous experience as a software developer

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control flow graphs

• Taint analysis

• Pointer tracking

• DevSecOps and static analysis

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control flow graphs

• Taint analysis

• Pointer tracking

• DevSecOps and static analysis

How Do We Find Bugs?

Static Analysis (SAST)

• Analysing an application without executing it

• Code review, binary analysis, reverse engineering

Dynamic Analysis (DAST)

• Analysing by monitoring and interacting with the application as it
executes

• Fuzzing, tampering, functional testing

How Do We Find Bugs?

Static Analysis (SAST)

• Analysing an application without executing it

• Code review, binary analysis, reverse engineering

Dynamic Analysis (DAST)

• Analysing by monitoring and interacting with the application as it
executes

• Fuzzing, tampering, functional testing

How Do We Find Bugs?

Static Analysis (SAST)

• Analysing an application without executing it

• Code review, binary analysis, reverse engineering

Dynamic Analysis (DAST)

• Analysing by monitoring and interacting with the application as it
executes

• Fuzzing, tampering, functional testing

How Do We Code Review?

Manual

• Give code to smart security experts

• They read, understand and spot bugs

Automated

• Pass code to a tool

• Tool parses code, hunts for known issues

Code Review - Examples

void echo ()

{

char buf[8];

gets(buf);

printf("%s\n", buf);

}

Code Review - Examples

webView.getSettings().setJavaScriptEnabled(true);

Manual Code Review – The Downsides

• Manual code review is expensive

~45 Million LOC ~86 Million LOC ~24 Million LOC

Manual Code Review – The Downsides

• Steve McConnell (Code Complete) says 10-20 defects per 1000
lines of code…

Manual Code Review – The Downsides

• Steve McConnell (Code Complete) says 10-20 defects per 1000
lines of code…

~675,000 bugs ~1,290,000 bugs ~360,000 bugs

Static Code Analysis

• Automated searching of source code for issues

• Higher up front costs

• ‘Free’ security once built and configured

• Catch low hanging fruit automatically

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control Flow Graphs

• Taint Analysis

• Pointer Tracking

• DevSecOps and Static Analysis

Computer Science Theory Ahead

To best use tools, you need to understand them.

• Languages

• Automata / State Machines

• Parsers

Languages

• Language - A set of strings of symbols constrained by a grammar

• Grammar – A set of rules defining the correct formation of a
language

• Different grammars for different types of language

Chomsky’s Language Hierarchy

Chomsky’s Language Hierarchy

Context-Free Languages

• Anything that can be parsed by a context free grammar

• Most programming languages are mostly context free*
• This is why parsing programming languages with regular expressions isn’t

great

* Templates, macros etc complicate this

Pushdown Automata

• Implementation of a context-free grammar

• Finite State Machines with stacks

• Decide transition based on both input and top of stack

• Can push/pop to stack as needed

Parsers

• Use a grammar to understand a language, convert it into a
hierarchical data structure

• Several different types, depending on what you’re parsing

• TL;DR: Construct a Parse Tree or Abstract Syntax Tree (AST) from
the source code

Parsers

Two separate stages

• Lexer splits input text into tokens (strings with an understood
meaning)

• Parser constructs AST or similar from list of tokens

Can combine both – scannerless parsing

Lexer Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Lexer Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Lexed Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

Parser Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

If()

Parser Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

If()

Code Block

Parser Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

If()

Code Block

printf()

Parser Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

If()

Code Block

printf() printf()

Parser Example

Code:

if (DEBUG)

{

printf(…);

printf(…);

printf(…);

}

If()

Code Block

printf() printf()printf()

We’ve got an AST, now what?

Basic:

• Search AST for dodgy function calls, check for debug guards etc

• Check for questionable imports

• Can be done with regexes, but understanding of code structure ->
fewer false positives

Advanced:

• Control Flow Graphs (CFGs)

• Taint Analysis

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control Flow Graphs

• Taint Analysis

• Pointer Tracking

• DevSecOps and Static Analysis

Control Flow Graphs

“a representation, using graph notation, of all paths that might be
traversed through a program”

• Each basic block represented as a graph node

• Jump targets start block, jumps end block

• Jumps represented as directed edges

Control Flow Graphs

Commonly used for compiler optimisation

• Unreachable/dead code

• Detection of infinite loops

• Arithmetic optimisation

• Jump threading

Control Flow Graphs

Why Should I Care About Control Flow Graphs?

• Allows tracing of execution dependant on given inputs without
running the application

• Allows a number of different analysis types

• We’re going to focus on:
• Taint Analysis

• Pointer Tracking

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control Flow Graphs

• Taint Analysis

• Pointer Tracking

• DevSecOps and Static Analysis

Taint Analysis

• Analyse data sinks to understand where the data has come from

• If it’s from external input, it’s tainted unless sanitised

• Trace data sinks back to original source

• Data sanitized several function calls ago? Trace the graph back and
find it

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

Taint Analysis

$result = login($_POST[‘user’], $_POST[‘password’]);

function login(user, password) {

return login_query(user, password);

}

function login_query(user, password) {

return mysqli_query(‘select * from user where user=‘ +
$user + ‘ and password=‘ + $password + ‘;’);

}

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control Flow Graphs

• Taint Analysis

• Pointer Tracking

• DevSecOps and Static Analysis

Pointer Tracking

• When walking the graph, track:
• Pointer creation/destruction

• Memory allocation/deallocation

• Spot code paths leading to memory errors

Pointer Tracking

char* ptr = (char*)malloc (SIZE);

...

if (err) {

free(ptr);

}

...

if (DEBUG_MODE && err) {

logError("operation aborted before commit", ptr);

}

Pointer Tracking

char* ptr = (char*)malloc (SIZE);

...

if (err) {

free(ptr);

}

...

if (DEBUG_MODE && err) {

logError("operation aborted before commit", ptr);

}

Pointer Tracking

char* ptr = (char*)malloc (SIZE);

...

if (err) {

free(ptr);

}

...

if (DEBUG_MODE && err) {

logError("operation aborted before commit", ptr);

}

Pointer Tracking

char* ptr = (char*)malloc (SIZE);

...

if (err) {

free(ptr);

}

...

if (DEBUG_MODE && err) {

logError("operation aborted before commit", ptr);

}

Pointer Tracking

Can be used to find:

• Null pointers

• Use after frees

• Dangling pointers

What Will We Be Covering?

• Why do we need static code analysis?

• How does an analyser work?

• Control Flow Graphs

• Taint Analysis

• Pointer Tracking

• DevSecOps and Static Analysis

Static Analysis in an SDLC

• Catch security issues before penetration tests

• One developer builds it, everyone can use it

• Can be built into existing toolchain, used with continuous
integration systems etc.

• Catch issues as they are introduced to the codebase

• Catch regressions in code before it hits production

Static Analysis for Infrastructure

• Source code static analysis is known to work well

• Can we statically analyse infrastructure?

Infrastructure as Code

• Defining your infrastructure in software

• System definitions stored in configuration files, pushed/pulled
to/from servers by agents or control nodes

• Common systems:
• Chef

• Puppet

• Ansible

• Salt

Infrastructure as Code

• Usually tested with unit and integration testing
• Often as part of a CI toolchain

• Common tools:
• BDD-Security

• Cucumber

• Rspec

• Selenium

Static Analysis for Infrastructure

• Can we statically analyse infrastructure?

• Already common for syntax/style checks
• Ansible -> ansible-lint

• Chef -> FoodCritic, rubocop

• Puppet -> puppet-lint, erb syntax checking

• Can be used to catch security issues too

What Security Issues Can We Find?

• Hardcoded passwords
• Ansible -> ansible_become_pass without using ansible_vault or similar

• Presence of unnecessary tooling
• gcc left on production servers

• Failure to apply hardening
• SSH – password authentication/root login enabled

• Overly permissive firewall rules

• No SELinux/AppArmor/grsec

What Do We Need To Do This?

• Parser for CM tool’s Domain Specific Language (DSL)
• Most DSLs are variants on existing languages

• Leverage existing parsers

• A rules engine
• Define what “good” or “not good” looks like

• To analyse, walk the AST, compare tree nodes against rules DB

• Infrastructure static analysis simpler to implement yourself than
code analysis

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Example

Rules:

Case lineinfile:

if regexp.contains(“PasswordAuthentication”):

if line.matches(“PasswordAuthentication yes”):

raise_flag(“PasswordAuthentication enabled on
SSH”)

Case ufw:

if policy == “allow”:

raise_flag(“UFW default incoming set to allow”)

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Example

Tasks:

- name: Setup ufw

ufw: state=enabled policy=deny

- name: allow password authentication

lineinfile: dest=/etc/ssh/sshd_config

regexp="^PasswordAuthentication"

line="PasswordAuthentication yes"

state=present

notify: Restart ssh

Why Does This Help?

• Enforce common good practices in an environment agnostic manner

• Complements integration/unit testing

• Can be run locally on a developer’s machine
• Instant feedback

• No VMs required

• Complements automated integration testing as part of CI

Conclusion

• Static analysis catches some classes of bugs cheaply

• Build it into your continuous integration for automated security

• Static analysis can be used on IaC
• Complements integration and unit testing

Join the conversation #devseccon

Thank you all for listening!

Any questions?

