
Labs.mwrinfosecurity.com | © MWR Labs 1

Labs.mwrinfosecurity.com | © MWR Labs

Windows Kernel Fuzzing
Nils

29th October 2015

T2 InfoSec

Labs.mwrinfosecurity.com | © MWR Labs 2

Agenda

Introduction

Architecture & Implementation

Fuzzer

Manager

Tips and Tricks

Results

Labs.mwrinfosecurity.com | © MWR Labs 3

Introduction - About me

• Nils (@nils)

• Security Researcher at MWR

– Since 2009

• Offensive research for defensive purposes

• Previous Research

– Android, Chip&Pin, Browsers, Kernels

• Director of bytegeist GmbH

– An MWR Company

– Highly specialised security research projects

Labs.mwrinfosecurity.com | © MWR Labs 4

Introduction - Motivation

• Local Privilege Escalation

– Part of any serious in-the-wild attack

– e.g. Sandbox breakout

• We used a win32k buffer overflow at pwn2own 2013

– Wrote a fuzzer to find this

– Many limitations (e.g. no repros)

• Google Project Zero provided funding:

– Further develop the fuzzer

– Run it at scale

Labs.mwrinfosecurity.com | © MWR Labs 5

Introduction - Goals

Labs.mwrinfosecurity.com | © MWR Labs 6

Introduction - Goals

• Find many Windows Kernel Vulnerabilities

– And get them fixed

• Hopefully increase cost for attackers

• And learn stuff

– Exploitation

– Potential Mitigations

Labs.mwrinfosecurity.com | © MWR Labs 7

What are we trying to find?

• CVE-2015-1701

– win32k UAF used by APT28 (Fireeye)

– ClientCopyImage user-mode callback

• CVE-2015-2546

– win32k tagPOPUPMENU Use-After-Free

– In the wild attacks (Fireeye)

• CVE-2014-4113 - win32k memory corruption

– xxxMNFindWindowFromPoint

– used in targeted attacks (Trend Micro)

Labs.mwrinfosecurity.com | © MWR Labs 8

The Plan: To implement a Windows Kernel Fuzzer

• Fuzzes on the current state

• Logs testcases

– Reproducible and minimisable

• Extensible and modular

– Core kernel, win32k and other drivers

• Is able to run automated at a large scale

• And most importantly finds a lot of vulns

• Many implementation ideas borrowed from browser

fuzzing

Labs.mwrinfosecurity.com | © MWR Labs 9

Fuzzer
Design and Implementation

Labs.mwrinfosecurity.com | © MWR Labs 10

Architecture - Fuzzer

Labs.mwrinfosecurity.com | © MWR Labs 11

Implementation

• Everything implemented in Python

• Extensive use of ctypes

– Dirty^H custom assembler for system calls

• Allows for rapid developed and extension

Labs.mwrinfosecurity.com | © MWR Labs 12

Test Catalog

• Stored knowledge on how to interact with Kernel

– Programmatically

– From Reversing, Googling, MSDN, ReactOS, etc

• E.g. System and Library calls

– Arguments, return values

• Most of the work went into developing this

• We could just fire random system call # and arguments

– Unlikely to get a good coverage

– Even at scale

Labs.mwrinfosecurity.com | © MWR Labs 13

Test Catalog - Implementation

• Each test is a Python class implementing:

– generate_arguments()

Generates random arguments for the current test

– run()

Executes the current test using arguments

Labs.mwrinfosecurity.com | © MWR Labs 14

Test Catalog – Example – Long Form

class GDI32_CreateSolidBrush(TestCase):

def generate_arguments(self):

self.args=[]

color = arguments.HexArg(self.fuzzer.R(0xffffffff))

self.args.append(color)

return True

def run(self):

rv = ntypes.gdi32.CreateSolidBrush(self.args[0].value)

self.addhandle(“hbrush”, rv)

Labs.mwrinfosecurity.com | © MWR Labs 15

Test Catalog – Example – Short Form

class GDI32_CreateSolidBrush(SimpleTestCase):

function = ntypes.gdi32.CreateSolidBrush

arguments = [[SimpleTestCase.randomhexarg, 0xffffffff]]

returnhandle = "hbrush"

Labs.mwrinfosecurity.com | © MWR Labs 16

Test Catalog – Example – Complex

class COMPLEX_NotepadWindow(Testcase):

def generatearguments(self):

self.args = []

name = "n" + hex(self.dr.R(0x7fffffff))

self.stringarg(name)

return True

def run(self):

open(self.args[0].value, "w").close()

ps = subprocess.Popen(["c:\\windows\\system32\\notepad.exe",…

windowname = self.args[0].value + " - Notepad"

time.sleep(1)

hwnd = ntypes.user32.FindWindowA(0, windowname)

self.addhandle("hwnd", hwnd)

hmenu = ntypes.user32.GetMenu(hwnd)

self.addhandle("hmenu", hmenu)

self.addhandle("pid", ps.pid)

Labs.mwrinfosecurity.com | © MWR Labs 17

Handle DB

Handles are references to

objects in the Kernel

Returned by system calls

Consumed as arguments to system calls

Handle DB stores returned handles and provided random

handles to tests

Labs.mwrinfosecurity.com | © MWR Labs 18

Fuzzing Run

1. Fuzzer selects random test from catalog

2. Generates arguments by calling generate_arguments()

3. Serialises arguments according to type

(numbers, strings, handles, return buffer)

4. Logs test name, arguments, procedure and thread

5. Executes test by calling run()

Labs.mwrinfosecurity.com | © MWR Labs 19

Procedures

• Execution of tests in different contexts

– Threads, Callbacks, Window Procedures

• “Kernel Attacks through User-Mode Callbacks”

– Excellent paper by Tarjei Mandt

Labs.mwrinfosecurity.com | © MWR Labs 20

Procedures – Example Window Proc

• Python wrapper functions

– Set current function name

– Execute main fuzzing loop

– Pseudo code:

wrapper = functools.partial(wnd_proc,fuzzer,name)

wndclass.lpfnWndProc = ntypes.WNDPROC(wrapper)

def wnd_proc(fuzzer,name,hwnd,msg, lparam,wparam):

oldfunc_name = fuzzer.get_func_name()

fuzzer.set_func_name(name)

fuzzer.fuzz()

fuzzer.set_func_name(oldfunc_name)

Labs.mwrinfosecurity.com | © MWR Labs 21

Procedures – User Mode Callbacks

• Introducing “Bambi” the hooker

– Hooks user-mode callbacks

• Again implemented as test

– Hooks *only* the next execution

– Unhooks automatically

• Some ctypes hacks for hooking

– Small basic assembler for trampolines

• API:

bambi.hook(index, function)

Labs.mwrinfosecurity.com | © MWR Labs 22

Threads

• Threads are just a special case of procedures

– executed in run() of threading.Thread

• Storage of current thread and function name in TLS

– Retrieved by the logger

Labs.mwrinfosecurity.com | © MWR Labs 23

Logging

t0:main:SC_NtGdiCreateMetafileDC(H[0x0])

t0:main:rc => HANDLE[ID{o0}:0x2d2108c1]

t0:main:GDI32_CreateSolidBrush(H[0xde9c7010L])

t0:main:rc => HANDLE[ID{o1}:0x91008d5]

t0:main:SC_NtGdiCreateMetafileDC(HANDLE[ID{o0}:0x2d2108c1])

t0:main:rc => HANDLE[ID{o2}:0x1121088c]

t0:main:SC_NtGdiSelectPen(HANDLE[ID{o2}:0x1121088c],…

t0:main:User32_CreateMenu()

t0:main:rc => HANDLE[ID{o3}:0x60227]

t0:main:User32_AppendMenuString(HANDLE[ID{o3}:0x60227],H[0x2]

,HANDLE[ID{o3}:0x60227],S['m'])

Labs.mwrinfosecurity.com | © MWR Labs 24

Reproducing Testcases

• Parsing the logs:

t0:main:SC_NtGdiCreateMetafileDC(H[0x0])

t0:main:rc => HANDLE[ID{o0}:0x2d2108c1]

• Thread Name

• Function Name

• Test Name

• Arguments

• Potentially return value(s)

Labs.mwrinfosecurity.com | © MWR Labs 25

Reproducing Testcases

• We get:

threads = {

“t0”: {

“function”: [

(“testname”, [arg1, arg2,…]),

…

],

…

}

}

Labs.mwrinfosecurity.com | © MWR Labs 26

Fuzzing Run - Reminder

1. Fuzzer selects random test from catalog

2. Generates arguments by calling generate_arguments()

3. Serialises arguments according to type

(numbers, strings, handles, return buffer)

4. Logs test name, arguments, procedure and thread

5. Executes test by calling run()

Labs.mwrinfosecurity.com | © MWR Labs 27

Repro Run

1. Fuzzer selects current test for thread & function

2. Fuzzer selects arguments for current test

3. Executes test by calling run()

Labs.mwrinfosecurity.com | © MWR Labs 28

Manager
Design and Implementation

Labs.mwrinfosecurity.com | © MWR Labs 29

Architecture - Manager

Labs.mwrinfosecurity.com | © MWR Labs 30

Manager – Example Run

1. Start the debugger VM

2. Wait for “Waiting to reconnect…”

3. Start the target VM

4. Record testcase until crash or stall

5. In case of crash: Store debugger output and testcases

6. Kill VM’s and start over at 1

Labs.mwrinfosecurity.com | © MWR Labs 31

Manager – Scaling it up

• First Option: Bare metal

+ Good Performance - High upfront cost

- Not very flexible

- Loud …

Labs.mwrinfosecurity.com | © MWR Labs 32

Manager – Scaling it up

• Second option: To the cloud

+ Flexible

+ Cheap (Spot instances/Preemptible)

+ No fixed costs

• However, there is one problem:

Labs.mwrinfosecurity.com | © MWR Labs 33

Manager – Scaling it up

Labs.mwrinfosecurity.com | © MWR Labs 34

Manager – Scaling it up

• We can make it work:

• QEMU/TCG

• ~10x slow down

– We can scale against that

– Just click that scale button at your cloud provider

• No x64 currently

Labs.mwrinfosecurity.com | © MWR Labs 35

Cloud – Costs ¯_(ツ)_/¯

Example: First week of October:

99.588 CPU(Core) Hours

Labs.mwrinfosecurity.com | © MWR Labs 36

Minimising Testcases

• Testcase

– Ordered set of lines (tests)

– Often > 10k , sometimes >100k

• Remove line by line

– Not crashing => Line essential for testcase

– Otherwise remove line

• Divide and Conquer

– Remove blocks instead of lines and reduce blocksize

Labs.mwrinfosecurity.com | © MWR Labs 37

Minimising Testcases – Divide & Conquer

• After 39 execution down to 3 lines (very “friendly” case)

Labs.mwrinfosecurity.com | © MWR Labs 38

Minimising Testcases – Example – 14 Lines

CVE-2015-1726: win32k use-after-free in HmgAllocateObjectAttr

https://code.google.com/p/google-security-research/issues/detail?id=320

t0:main:SC_NtGdiCreateHatchBrushInternal(H[0x4],H[0xb4],H[0x1])

t0:main:rc => HANDLE[ID{o8}:0x1410022f]

t0:main:NtGdiSetBrushAttributes(HANDLE[ID{o8}:0x1410022f],H[0x1])

t0:main:rc => HANDLE[ID{o10}:0x1490022f]

t0:main:SC_NtGdiClearBrushAttrs(HANDLE[ID{o10}:0x1490022f],H[0x1])

t0:main:rc => HANDLE[ID{o16}:0x1410022f]

t0:main:NtGdiSetBrushAttributes(HANDLE[ID{o8}:0x1410022f],H[0x1])

t0:main:SC_NtGdiClearBrushAttrs(HANDLE[ID{o10}:0x1490022f],H[0x1])

t0:main:SC_NtGdiDeleteObjectAppBrush(HANDLE[ID{o16}:0x1410022f])

t0:main:SC_NtGdiCreateHatchBrushInternal(H[0x7],H[0x72],H[0x1])

t0:main:rc => HANDLE[ID{o87}:0x81006c7]

t0:main:NtGdiSetBrushAttributes(HANDLE[ID{o87}:0x81006c7],H[0x1])

t0:main:rc => HANDLE[ID{o119}:0x89006c7]

t0:main:SC_NtGdiClearBrushAttrs(HANDLE[ID{o119}:0x89006c7],H[0x1])

Labs.mwrinfosecurity.com | © MWR Labs 39

Distributed Minimising

• Divide and Conquer not great for running in parallel

– Especially with fuzzing testcases

• The execution of the testcase only takes a few seconds

– Small testcase less than a second

• Distributed Minimiser

– Starts up VMs (Debugger/Targets)

– Upload testcases through serial port & execute

– D&C still sequential, substantially faster

– Implementation uses ZeroMQ PUSH/PULL

Labs.mwrinfosecurity.com | © MWR Labs 40

Tips&Tricks

Labs.mwrinfosecurity.com | © MWR Labs 41

Special Pool

• Page heap or AddressSanitizer for kernel drivers

• Detects buffer issues and UAF’s among other things

Output:
DRIVER_PAGE_FAULT_IN_FREED_SPECIAL_POOL (d5)

Memory was referenced after it was freed.

This cannot be protected by try-except.

When possible, the guilty driver's name (Unicode string) …

the bugcheck screen and saved in KiBugCheckDriver.

Arguments:

Arg1: fa85efa4, memory referenced

Arg2: 00000001, value 0 = read operation, 1 = write operation

Arg3: 94596f21, if non-zero, the address which referenced memory.

Arg4: 00000000, (reserved)

Labs.mwrinfosecurity.com | © MWR Labs 42

Exception Handlers

• Most system calls start with call to __SEH_prolog4

• Basically wrapping everything in a try {} catch () {}

– Even for access violations etc.

– Return from system call on error

– Masking many bugs

Labs.mwrinfosecurity.com | © MWR Labs 43

Exception Handlers - DISCLAIMER

• There are probably better solutions

– e.g. https://code.google.com/p/ioctlfuzzer

• Turn away if you are easily offended by dirty hacks :P

• Ready?

Labs.mwrinfosecurity.com | © MWR Labs 44

Exception Handlers - Hack

On load of win32k:

eb win32k!_SEH_prolog4 68 ef be ad de

eb win32k!_SEH_prolog4_GS 68 ef be ad de

Replaces:

push offset __except_handler_4

With:

push 0xdeadbeef

!analyze –v still successful \o/

Labs.mwrinfosecurity.com | © MWR Labs 45

Fuzzing with Minidumps

• Configure Windows to store Minidump

– On virtual hard drive

– Virtual hard drive not a snapshot

– Can be retrieved by Manager

• Requires reboot

– Minidump copied on reboot

• No real speed improvement

– However more VM’s per Memory

Labs.mwrinfosecurity.com | © MWR Labs 46

Does it work?

Labs.mwrinfosecurity.com | © MWR Labs 47

Results – 26 Bugs reported so far

0

2

4

6

8

10

12

14

Use-after-free
Buffer overflow
Null pointer
OTHER
LEAK

https://code.google.com/p/google-security-research/issues/list?can=1&q=label%3AFinder-nils

Labs.mwrinfosecurity.com | © MWR Labs 48

Conclusion

• It works

– Finding and minimising bugs automated process

– Had several runs on hundreds of cores

– More bugs in the pipeline

• Still many more bugs to find

• All bugs also affected the latest Windows versions

– Windows 8.1 or 10

Labs.mwrinfosecurity.com | © MWR Labs 49

Future Work

• Open source the fuzzer

– Once it stops finding bugs

• Continue adding tests

– More Nt*

– Ioctl’s

– Other drivers: afd.sys, DirectX and many more

• More runs at scale

– It keeps finding new bugs without changes

A problem has been detected and Windows has been shut down

to prevent damage to your computer.

ANY_QUESTIONS_PLEASE_ASK

Technical Information:

*** STOP: 0xHAMMERTIME (0xC000FFEE, 0xDEADBEEF)

