
1

TLP:CLEAR

WithSecure STINGR Research

Mohammad Kazem Hassan Nejad
January 2026

To the past and
beyond: Andariel’s
latest arsenal and
cyberattacks

TLP:CLEAR

2

TLP:CLEAR

Executive Summary�� 3

Introduction��� 4

Attack #1: Public/Legal sector in Europe��� 5

Background�� 5

Intrusion activity timeline�� 6

Intrusion activity breakdown��� 7

Staging folders��� 10

Threat actor’s behavior��� 11

Intrusion time zone analysis��� 12

Attack #2: ERP software in South Korea�� 13

Background�� 13

Trojanized supply-chain to deliver new RATs��� 13

Other components linked to the campaign��� 14

Discovery and analysis of Andariel’s staging server and arsenal�� 19

Background�� 19

New RATs��� 19

New tools��� 26

Other tools��� 28

Conclusion��� 29

Acknowledgements�� 29

Appendices�� 30

Indicators of Compromise (IOCs)�� 30

YARA rules��� 30

Table of Contents

3

TLP:CLEAR

Executive Summary

WithSecure proactively identified and notified a
European customer belonging to the public/legal
sector of a breach attributed with high confidence to
the Andariel group, a state-sponsored cyber group
linked to the Reconnaissance General Bureau
(RGB) 3rd bureau of Democratic People’s Republic
of Korea (DPRK).

The attribution was based on the threat actor’s usage
of unique malware, such as TigerRAT, command
execution patterns, infrastructure linkages, and other
technical and non-technical evidence that linked it to
previous reports of Andariel activity. The investigation also led WithSecure to discover a staging server

used by the group. Through this staging server, we were able to find
additional artifacts related to both attacks. We also discovered a mix of
new and old techniques and tooling used by the group to conduct their
latest attacks, including privilege escalation tools such as PrintSpoofer
and PetitPotato, and the abuse of the trending bring-your-own-
vulnerable-driver (BYOVD) technique that is used by other threat
actors to kill AV/EDR products.

We assess that the primary goal of this breach was
cyberespionage. This was determined based on the
group’s past objectives and the intrusion activity, but
most notably the threat actor accessing documents
relating to anti-money laundering on the victim host.
DPRK is notoriously known for its money-laundering
activity to evade international sanctions.

This investigation led WithSecure to the discovery of another set
of attack conducted by this group against an Enterprise Resource
Planning (ERP) software in Republic of Korea (ROK) in 2025.
WithSecure determined that this particular ERP software had been a
previous target of Andariel in 2017 and almost certainly again in 2024.

This further on led to the discovery of three new, previously
undocumented RATs that WithSecure attributes to Andariel, namely
StarshellRAT, JelusRAT, and GopherRAT.

1

2

3

4

5

6

4

TLP:CLEAR

Introduction

In 2024 and 2025, some of the notable cyber activities linked to the Democratic People’s Republic of Korea
(DPRK) nexus have primarily revolved around their IT worker activities. While the regime continues to
advance and leverage this front, their traditional cyber means remain unabated.

In 2025, WithSecure discovered two cyberattacks that we attributed to the Andariel group, a state-sponsored
cyber group linked to the RGB 3rd bureau of Democratic People’s Republic of Korea (DPRK). During our
investigation, we also discovered a staging server used by Andariel. We were able to pull artifacts from it
during its uptime.

Throughout our research, we identified several new implants, tools, and techniques that shape a part of
Andariel’s latest arsenal. These include new remote access trojans (RATs) such as JelusRAT, StarshellRAT,
and GopherRAT, as well as tools and techniques such as a custom port scanner, a PetitPotato sample, and
abusing a vulnerable driver to target AV/EDR products.

Although we discovered new additions to their arsenal, the group still heavily re-uses their older custom
malware, packers, tools, TTPs, and overall operational patterns. These generate identifiable footprints that
provide cybersecurity practitioners with ample opportunities to track and attribute the group’s activity.

This report provides details on the two cyberattacks we investigated and analysis of the artifacts we found
across the two attacks and on the staging server. WithSecure has engaged governments and select partners
with advanced copies of this report.

TLP:CLEAR

5

Attack #1: Public/Legal
sector in Europe

Background
In 2025, WithSecure proactively identified and notified a European
customer about a set of highly malicious activity occurring on a host
in the victim estate. The threat actor had established a foothold on the
host by setting up an unknown binary (hereon called “the implant”) as
a scheduled task and perpetrated their attack, hands-on, by launching
a set of commands and activity through this established implant.

WithSecure initially identified and notified the customer about this
intrusion while conducting a proactive threat hunt. Almost a month
later, WithSecure again identified malicious activity on this host
originating from the same implant. Upon notifying the customer again,
the customer quickly acted and isolated the affected hosts.

Upon receiving a copy of the implant from the customer, WithSecure
quickly identified the implant as a TigerRAT sample. TigerRAT is a
custom remote access trojan (RAT) exclusively linked to the Andariel
group since 20201. The sample was packed by a custom packer
named TomCryptor, which has also been exclusively used in the past
by Andariel to pack their custom payloads, including HazyLoad2,
modified AsyncRAT clients, as well as other TigerRAT samples.

Upon further analysis of the technical and non-technical evidence
gathered, such as the unique malware and packer used, the implant’s
C2 infrastructure linkages, and the overall intrusion activity patterns,
WithSecure was able to attribute the attack with high confidence to
the Andariel group.

On one of the first few days of hands-on activity, the threat actor
accessed documents related to anti-money laundering on the host.
Given DPRK is notoriously known for its money-laundering activity
to evade international sanctions and Andariel’s past ‘actions on
objectives’, we determined the primary goal of this intrusion was
cyberespionage. However, as the threat actor was expelled from the
victim estate amid conducting their attack and moving laterally, their
ultimate goals may not have been fully realized.

The initial infection vector could not be determined, as WithSecure’s
Endpoint Detection and Response (EDR) solution was deployed after
the customer had already been compromised. However, our analysis
revealed that the implant was set up as a scheduled task 80 days prior
to its initial use. There is no clear evidence indicating that any other
activity took place on the host from the time the implant was added
as a scheduled task (80 days earlier) until the first hands-on activity
detected by WithSecure’s EDR solution.

6

TLP:CLEAR

Day -2 (-80 days)

Day -1 (-9 days)

Day 0 (0 days)

Day 1 (+4 days)

Day 2 (+7 days) Day 4 (+11 days)

Day 5 (+50 days)

The group carried out their hands-on activity in the victim estate over a seven-day period that was spread across nearly two months, with inactivity periods varying from a couple of hours to over a month.
The overall intrusion activity timeline has been summarized in figure 1.

Implant’s scheduled
task start date

WithSecure EDR agent
installed on host

– start of telemetry

Initial network recon and
drive discovery via implant

(START)

Custom tool execution
likely for drive and file

enumeration

Artifact removal related to
previous day

Some further
activity including:

ping, RDP session
listing, and more.

Impacket usage

Further activity including:
LSASS dump via

procdump, iSCSI listing,
and more.

Day 6 (+52 days)

Impacket and RDP usage

Lateral movement to adjacent host

Some further activity including: credential
access via passview, port scanning, and more.

Customer isolated hosts (END)

Intrusion activity timeline

Day 3 (+9 days)

Access documents related to anti-money
laundering

Further activity including: network recon, full
AD dump, dump security registry hive, RDP
session listing, user/computer information

gathering, and more.

Figure 1. Timeline summary of intrusion activity TLP:CLEAR

6

7

TLP:CLEAR

Intrusion activity breakdown
Most of the malicious activity was conducted through the established implant. However, during the final two days of the intrusion, we observed additional actions executed over RDP and Impacket, likely facilitated by a
reverse proxy or tunnel created via the implant.

On the final day, the threat actor also briefly moved laterally to an adjacent host, deploying the same implant as a scheduled task and executing several tools and commands.

Persistence via scheduled task

Credential dumping

Network discovery/recon
The threat actor established persistence for the implant on the hosts via scheduled
tasks. Some related commands included:

1.	 �Check if scheduled task exists: schtasks | findstr XXXX

2.	 �Create scheduled task: schtasks /create /tn XXXX /tr XXXX /sc daily /st
XX:XX:XX /ru system

3.	 �Force run scheduled task (starting the implant right away): schtasks /run /tn
XXXX

The threat actor accessed and dumped various credentials through different
methods. These set of actions enabled wider user and domain compromise. Some
methods included:

1.	 Full AD dump via ntdsutil: ntdsutil “ac i ntds” “ifm” “create full c:\ntds” q q

2.	 Security registry hive dump: reg save hklm\security c:\programdata\security

3.	 LSASS dump through procdump: pd.exe -accepteula -ma lsass.exe c:\
programdata\lsa.dmp

4.	 Browser credential access via PassView: The threat actor dropped and
executed PassView (Nirsoft’s WebBrowserPassView), a tool which allows the
threat actor to steal browser credentials. Andariel has used this software in past
campaigns as well3.

The threat actor checked the host’s network configuration and actively scanned for
other hosts in the victim’s network as one of their primary objectives.

This activity was performed through several methods. Some of the executed
commands included:

1.	 powershell “Import-Module ActiveDirectory; Get-ADComputer -Filter * -Properties
IPv4Address, OperatingSystem, LastLogonDate | Select IPv4Address, Name,
OperatingSystem, LastLogonDate | Sort IPv4Address | Format-Table -AutoSize”

2.	 ping -n 2 <ip/host>

3.	 netstat -naop tcp

4.	 netstat -naop tcp | findstr 445

5.	 netstat -naop tcp | findstr ESTA

6.	 netstat -naop tcp | findstr <3rd-4thIPv4Octet>

7.	 ipconfig

8.	 arp –a

Although a common command, the Andariel group is particularly known to use netstat
command quite extensively in their attacks4.

The threat actor also relied on a custom port scanner to scan ports for HTTP (80),
HTTPS (443, 8443), SMB (445), RDP (3389), as well as 2 custom ports (5000,5001)
across internal IP ranges. The custom port scanner (named ps.exe) was dropped
and executed on the hosts through the implant. The port scanner is detailed in a later
section called “Custom .NET port scanner”.

8

TLP:CLEAR

Drive and disk discovery Modify Windows Defender settings
The threat actor looked for connected disks and drives via WMI and for iSCSI storages.
These set of actions were most likely done as a pre-cursor to enable data theft and
exfiltration of sensitive documents. This was achieved through commands including:

1.	 iscsicli sessionlist

2.	 wmic diskdrive get size,model

3.	 wmic logicaldisk get filesystem,name,size

4.	 wmic logicaldisk get name, drivetype, filesystem, size

The threat actor excluded one of the paths where some of their tools were staged:

1.	 powershell Get-MpPreference | findstr Exclusion

2.	 powershell -Command Add-MpPreference -ExclusionPath “C:\Windows”

The threat actor also disabled Windows Defender before executing procdump, re-enabling
it afterwards:

1.	 powershell Get-MpPreference | findstr DisableRealtimeMonitoring

2.	 powershell Set-MpPreference -DisableRealtimeMonitoring 1

3.	 pd.exe -accepteula -ma lsass.exe c:\programdata\lsa.dmp

4.	 powershell Set-MpPreference -DisableRealtimeMonitoring 0

At the early stages of the attack, right after running disk and drive discovery
commands, the threat actor dropped and executed a custom tool named “fm.exe”
(renamed to splwow.exe) via the implant. The custom tool could not be recovered from
the host, but we suspect this was a custom tool to enumerate a target drive.

Such assessment is based on factors such as:

The tool was executed in early stages
following a disk drive listing via WMIC

We identified a tool referenced in an Andariel
report5 that matched several characteristics
of this tool. We were unable to obtain a
sample to confirm the connection.

The threat actor used the implant to
directly access sensitive (anti-money
laundering) documents, including file
paths that were not previously known
to them.

The tool was invoked using a command
that included a drive letter; moreover,
the name of the produced output file
included a “.mfs” extension with file
format being compressed ZIP (PK
header). An example command line is:
splwow.exe -s i:\ -d c:\programdata\i

The tool was dropped as “fm.exe”, which
may be an abbreviation for “file manager”
– using abbreviations is a common pattern
with some Andariel campaigns.

1 4

2

5

3

9

TLP:CLEAR

Gather information on user/machine Modify time attributes Artifact removal

RDP-related activity

As part of their overall information gathering and
reconnaissance activities, the threat actor gathered information
on the victim host and user accounts. Some executed
commands included:

1.	 systeminfo

2.	 whoami

3.	 query user

4.	 net localgroup administrators

5.	 net user

The threat actor deployed an unknown tool (named “t.exe”)
onto the hosts through the implant (first host) and RDP
(adjacent host). The tool could not be recovered from the
affected hosts. We suspect t.exe was a custom tool to modify
the implant’s time attributes; this assessment was based on:

1.	 A previous Andariel report7 highlights a time modification
tool that matches in terms of file name and command line
pattern.

2.	 The tool was dropped as “t.exe”, which may be an
abbreviation for “time” – using abbreviations is a common
pattern with some Andariel campaigns.

3.	 After a few seemingly unsuccessful attempts to execute the
tool with the right file path as its command line arguments,
the threat actor immediately used PowerShell to modify the
time attributes instead.

The executed PowerShell commands were:

1.	 powershell (Get-Item “XXXX”).CreationTime = (Get-Date
“XXXX”)

2.	 powershell (Get-Item “C:\TestFolder”).LastWriteTime =
(Get-Date(‘XXXX’))

3.	 powershell (Get-Item “XXXX”).LastWriteTime = (Get-
Date(‘XXXX’))	

These set of actions were likely to further blend the implant
into the victim environment and make it appear as an older
component of the system.

The threat actor consciously removed artifacts, such as tools
staged onto the hosts and output files generated via the tools or
executed commands. To do so, the threat actor leveraged:

1.	 Remove directory command: rd /S /Q C:\ntds

2.	 Delete command: del <filename>

3.	 Implant’s built-in functionality

These set of actions were likely aimed at hindering incident
response and malware analysis by removing forensic footprints –
especially as Andariel often relies on custom tooling and malware.

The threat actor queried RDP sessions through commands
such as:

1.	 qwinsta

2.	 wevtutil qe Microsoft-Windows-TerminalServices-
LocalSessionManager/Operational /c:5 “/q:*[System
[(EventID=25)]]” /rd:true /f:text

•	 This command has been used by Andariel in the past6

The threat actor leveraged RDP to conduct a very small portion
of their attack, primarily to logon into hosts, drop and execute
several tools, and run some commands. It is unclear why
the threat actor switched over to RDP when the implant was
already established on a host (or could be established through
other lateral movement methods).

10

TLP:CLEAR

Miscellaneous commands
Throughout the attack, the threat actor also used a variety of other commands for
different purposes. These included:

•	 Read file content: type <filename>

•	 For example: To read port scanner output file directly via the implant.

•	 Check file presence: dir <filename>

•	 For example: To check whether the threat actor’s own tools or generated output
files exist on disk (often precursor to removing them)

•	 Kill running process: taskkill /f /im <filename>

•	 For example: To stop the threat actor’s own running processes, such as the port
scanner.

•	 Rename file: move <original> <new>

•	 For example: To rename files dropped with “.gif” or “.ex” extensions to their “.exe”
equivalent.

•	 Check running process: tasklist | findstr <processName or processID>

•	 For example: To check if the threat actor’s own processes, WithSecure-related
processes, or other service processes are still running.

•	 Check running process (2nd variation): powershell Get-Process
<processName> | Format-List Path

•	 For example: To check if WithSecure-related processes or other service
processes are still running.

•	 Check local system time: time /T

Staging folders
The threat actor staged files in various folders including:

1.	 Desktop directory

2.	 C:\ProgramData\

3.	 C:\Windows\

Some of the staged tools and malware were dropped with “.ex” or
“.gif” extension before being renamed to their “.exe” equivalent.

11

TLP:CLEAR

Threat actor’s behavior
Andariel is notoriously known for making typographical errors (typos) in the set of hands-on commands they execute8,9. This
behavior was observed in this incident as well; examples of these typos were (boldened and underscored):

•	 reg query
HKLM\SYSTEM\CurrentContorlSet\Control\SecurityProviders\WDigest

•	 tasklsit | findstr pd.exe

•	 taskkill /f /im fs.exe

Furthermore, another noteworthy behavior observed in this incident was the re-execution of certain commands via the implant
hours or days later, for example:

•	 �Listing RDP sessions: wevtutil qe Microsoft-Windows-TerminalServices-LocalSessionManager/Operational /c:5 “/q:*[System
[(EventID=25)]]” /rd:true /f:text

•	 Listing RDP sessions (2): qwinsta

•	 AD dump: ntdsutil “ac i ntds” “ifm” “create full c:\ntds” q q

•	 Check local system time: time /T

It is sensible for some of these commands to be re-executed, however actions such as re-executing the AD dump command may
be redundant and could highlight either:

•	 There are multiple operators that work on a single intrusion and carry out actions through the attack lifecycle.

•	 An operator may be handling multiple intrusions simultaneously, thus forgetting what previous steps they may have taken in any
one particular intrusion.

Note: �This long command with the same exact typo was made on two separate days, potentially highlighting it was
copy-pasted by the operator from perhaps a playbook that contained the typo.

12

TLP:CLEAR

Intrusion time zone analysis
The scheduled task was set to start the implant at 10:05 (adjusted to UTC+9 - Pyongyang time). Furthermore, the intrusion activity timestamps also aligned well with the UTC +9 time zone. The threat activity per time of
day (adjusted to UTC+9) has been depicted in figure 2. Reviewing activity by time of day showed that most of the activity occurred between 13:00 to 0:00 (UTC+9), which matches intrusion activity time linked to previous
Andariel/DPRK activity10. The activity was carried out between Monday and Friday.

Figure 2. Threat activity per time of day (converted to UTC+9)

500

600

700

800

900

400

300

200

100

0

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 16:00 21:0012:00 17:00 22:0013:00 18:00 23:0014:00 19:0015:00 20:00

40 4013016012712003242877313 00 0 0 0 0 00 0 00 0

Combined #actions per time of day (UTC+9 time)

13

TLP:CLEAR

Attack #2: ERP software
in South Korea

Background
The investigation of the attack described in the previous section
“Attack #1: Public/Legal sector in Europe” led WithSecure to the
discovery of novel tooling and malware linked to another set of
attack conducted by Andariel against an Enterprise Resource
Planning (ERP) software in Republic of Korea (ROK) in 2025.

Through our research and public reporting11, WithSecure
determined the ERP vendor’s particular software had been a
target of Andariel in the past, particularly in 2017 and almost
certainly again in 2024. In these two instances, it became
apparent that the file server and update mechanism of the ERP
software were compromised and trojanized to distribute malware
to downstream victims.

By piecing together and analyzing artifacts and components
we found related to the latest campaign, we assess the threat
actor followed a similar attack pattern by compromising the file
server(s) the ERP software would fetch its components from
(during its setup and/or update process), and by delivering a
fileserver-hosted trojanized version of one of the software’s
primary components, it would infect downstream victims with
two new RATs.

WithSecure was unable to determine the full scale or impact
of this campaign; however, the ERP vendor is regarded
as one of South Korea’s leading ERP providers, delivering
solutions to more than 2,200 customers across key sectors
including the public sector, semiconductors and equipment, IT,
pharmaceuticals, and medical devices.

WithSecure identified two distinct variants of the trojanized component in the ERP software.

The first variant delivers a new implant called JelusRAT, while the other delivers another new implant called StarshellRAT.
The two implants are described in further detail in later sections called “JelusRAT” and “StarshellRAT”, respectively.

For the first variant, the trojanized component contained one additional method added by the threat actor which renamed two
files (JelusRAT components - also fetched from the file server during the setup/update process) and launched one of the files
(the JelusRAT implant). The code snippet for this added method is shown in figure 3. The two fetched JelusRAT component
names also masqueraded as part of the ERP software to blend in with the rest of the software components, making them less
likely to be noticed.

Trojanized supply-chain to deliver new RATs

Figure 3. Code portion from malicious method added to the first variant

14

TLP:CLEAR

For the second variant, the trojanized component can be categorized as a downloader, as it dynamically
fetches an additional assembly payload from a remote address and executes it in-memory. To fetch the
assembly, a custom header called “Authorizations” needs to be present in the HTTP request, with its
value being the first IPv4 address of the victim’s machine. To fetch the IPv4 address, the threat actor
implemented another custom method within the trojanized component called GetLocalIPv4. At the
time of our analysis, the payload fetched from the remote address was exclusively the newly identified
StarshellRAT malware. The code snippet of the primary method added by the threat actor to this variant
is shown in figure 4.

Figure 5. Code portion from setup list builder

Setup list builder
We discovered a .NET application that appeared to function as a custom setup list builder for the
ERP software, at a high-level creating a configuration (XML) file that contained entries for each of the
software components that would be hosted on the file server. The format of the configuration file exactly
matched the response format for one of the ERP’s file servers’ API endpoint methods used by the
software during setup and/or update. A code snippet from the setup list builder is shown in figure 5.

Figure 4. Code portion from malicious method added to the second variant

Other components linked to the campaign
We discovered several other malicious components that likely enabled the compromise of the file
server(s) and/or are otherwise linked to the wider campaign against this particular ERP software
and/or vendor. These components are attributed to Andariel with varying confidence.

TLP:CLEAR

15

TLP:CLEAR

This sample was hosted on an Andariel staging server (described in
a later section called “Discovery and analysis of Andariel’s staging
server and arsenal”) that was also linked in other ways to Andariel and
this particular campaign. We assess the sample was custom built by
the threat actor.

The tool’s PDB path contained direct references to the ERP software
and vendor, but more importantly included a Korean phrase “배포공격”
which translates to ‘distribution attack’. This phrase and overall
functionality of this tool increased our confidence that the attack vector
employed by the threat actor to compromise downstream victims with
a RAT was a supply chain attack involving the ERP’s file server and the
software’s setup/update mechanism.

Custom downloader
One of the files we discovered was a .NET assembly (implemented
as a DLL) that functioned as a downloader. It contained a single
method called Client.Execute that receives four arguments, none of
which were actually used in the method implementation itself.

The code would then fetch a payload from a remote host by
establishing a TCP connection over port 8080 and sending the
string “cliAuth” as a message to the remote host in order to retrieve
the payload. The payload would be stored on disk (C:\Windows\
Temp\svccli.exe) and launched by the downloader. Finally, the
method returned a “Success” string. The implemented method is
shown in figure 6.

Figure 6. Custom downloader method implementation

16

TLP:CLEAR

We were unable to fetch the next-stage payload at the time of our analysis. However, the remote host was also simultaneously used as a C2 server for a SmallTiger implant (custom malware linked
to Andariel since 202412) and another new undocumented Golang-based RAT which we attribute to Andariel as well. The Golang RAT has been detailed in a later section called “GopherRAT”.

We attributed this sample to Andariel and the ERP attack campaign based on PDB references to the ERP vendor, the remote host serving as a C2 server for another known Andariel implant
(SmallTiger), and several other factors. The infrastructure and malware relations are depicted in figure 7.

Figure 7. Infrastructure and malware relationships for custom downloader and GopherRAT

17

TLP:CLEAR

Webshell – ASPXSHELL
We discovered another .NET assembly (implemented as a DLL) which had
a primary method called Encrypt, that takes in four arguments. It launches
a windowless process using the value provided via the third argument. It
decrypts the third argument via AES-256 and splits the decrypted content
using a “~I~” separator. The first portion of the string is meant to contain the
process filename and the second part, the command line argument. The
AES key is stored as a variable called “SendMessageNo” and its value is
“A%F#OdFSP8f5DFsfw123978$asfq^fbn”.

The method ultimately returns a string either containing an error message
(exception), launched process’s standard error output, or standard output (if
process was launched successfully) with other variables such as the process
filename, argument, and AppDomain.CurrentDomain.BaseDirectory.

The code snippet for the “Encrypt” method is shown in figure 8.

The sample was hosted on an Andariel staging server. Presence of the
word “aspxshell” in the PDB path and the file version information highly
suggest that it is a webshell-like component. Furthermore, the class
name masqueraded as a component of the ERP software and the PDB
path contained direct references to the ERP software and vendor name,
suggesting it was a custom component built specifically for the attack
campaign against this particular ERP software/vendor.

Figure 8. Code snippet for Encrypt method

18

TLP:CLEAR

Webshell – TigerShell
The last set of components we found likely linked to this campaign
were two ASPX webshells. These were uploaded to VirusTotal
by a user who submitted some unique components linked to the
campaign, which have been detailed in preceding sections. These
two webshell files were uploaded within the same timeframe as some
of the other samples.

Through a retroactive hunt, we were able to find four other variants for
this webshell – all submitted from South Korea. These samples were
implemented as JSP webshells rather than ASPX.

This collection of webshells were almost identical in implementation
(even across the two languages) and collectively supported
commands such as:

•	 Executing a shell command

•	 Executing a binary

•	 Uploading and downloading a file

•	 Testing network connectivity to another IP/port

•	 Heartbeat – checking if webshell is still active

For authentication, the webshell checks if the HTTP request contains
a “mode” parameter and if its value matches a hardcoded password.
The passwords found across all the samples were either “hellohaha”
or “zse4321qaw”.

Incoming commands can be passed to the webshell via the request’s “ArticleBody” parameter. The “ArticleBody”
content would be decoded from Base64. The decoded content would then be XORed with a hardcoded key. The key was
1021293033366069664347473831 (hex value) across all samples.

Some detected samples contained additional JSP implementation details. These included a code snippet that encapsulated the
webshell’s response within a form-data container, with the boundary ID hardcoded as 92ee0636f37ac8926354137bc151dabd.
The form data’s “name” parameter was set as “image” and its filename as “tiger.jsp”. This is depicted in figure 9.

Andariel uses custom HTTP requests to implement network communication in some of their malware, particularly using multipart
form-data. Also, the reference “tiger” has been used by Andariel in the past, for instance in their SmallTiger and TigerRAT
implants. However, tiger is also a cultural symbol linked to the Korean peninsula and is by no means an exclusive term used by the
Andariel group.

Therefore, while we believe these webshells were likely linked to Andariel activity, the collected evidence was not substantial
enough to support our attribution, therefore this remains as a low-confidence attribution at the time of writing.

Figure 9. Webshell response encapsulated in custom form-data

19

TLP:CLEAR

Discovery and analysis of Andariel’s staging server and arsenal

Background

New RATs

WithSecure discovered a staging server while analyzing the C2 infrastructure linked to the
TigerRAT implant used in attack #1. WithSecure was able to pull some of the artifacts hosted on
the staging server during its uptime.

We found:

1.	 �Some of the tools (including custom ones) hosted on the server were the same tools (and
exact hashes) used by Andariel in attack #1.

2.	 Some of the other tools and components hosted on the server were linked to attack #2.

3.	 �The staging server was also used to stage and act as a C2 for some of Andariel’s implants,
including TigerRAT and StarshellRAT samples.

These linkages as well as other patterns led us to attribute the staging server and artifacts hosted
at the time to Andariel. Some of the infrastructure and malware relations are depicted in figure 10.

In this section we will detail some of the unique tools and malware we discovered through our
investigation into the staging server as well as the two attacks described in earlier sections.

Figure 10. Links between Andariel’s C2 infrastructure and malware

JelusRAT
JelusRAT is a sophisticated 2-stage RAT that was leveraged by Andariel in attack #2. The RAT
requires an accompanying key file (called key.ini) to execute successfully.

The RAT is written in C++ and consists of a custom loader that decrypts the payload (main RAT
component) from its resource section and loads it in its own process memory.

20

TLP:CLEAR

Both the loader and the payload employ obfuscated stack strings to obscure their embedded strings
and use SIMD instructions to de-obfuscate them using various 16-byte XOR constants. An example
is shown in figure 11, where the result is an ANSI string “WS2_32.dll”.

This obfuscation pattern has been observed across various Andariel-linked malware that WithSecure has
analyzed, such as the one explained in a later section called “PetitPotato”.

Furthermore, both components resolve their import functions dynamically using the same approach. At a
high level, the malware computes a MurmurHash2A13 value for the function name it wants to import, iterates
through the target library’s export table, and compares the calculated hash against the hash of each exported
name. The hashing function used during dynamic import resolving is shown in figure 12. In this example, the
constant 0x5BD1E995 can be seen, which is typical for the 32-bit version of MurmurHash2 and its variants.

This method of dynamic import resolution is atypical. A more commonly adopted technique in malware is
to store only the hash values of desired APIs within the sample itself, avoiding the need to calculate them at
runtime. In such implementations, the function names never appear in the binary, making the usage of API
hashing more practical while also obscuring the original API names.

The name JelusRAT was chosen based on the threat actor’s own naming of the malware, that was found in
some of the samples’ PDB paths.

Figure 11. String obfuscation example

Figure 12. Hashing function used during dynamic import resolving

21

TLP:CLEAR

Loader
The loader masquerades as a dummy MFC application with one export
function called “HelloWorld”, which is executed in the application’s main
subroutine. Andariel has a history of using MFC applications to develop
their loaders14.

The loader contains two encrypted resource sections, one being the RAT
payload, and another being the RAT’s configuration.

Its functionality can be broken down into four main parts:

1.	 Generate decryption key

•	 Read “key.ini” file from the same directory as the RAT. The file is
immediately deleted after it is read.

•	 The content, which is base64-encoded, is ran through a custom
decryption algorithm. The final output is a string that is used to
decrypt the RAT’s configuration and payload, which are described
in the next 2 parts.

2.	 Decrypt and write RAT configuration to disk

•	 The loader reads one of its resource entries (encrypted data) which
corresponds to the RAT’s configuration.

•	 The encrypted data is decrypted via AES-256 (CBC mode), with
the AES key being set as the SHA256 value15 of the key generated
from the first part.

•	 The decrypted configuration data is written to a file called “Info.ini”
on disk.

3.	 Decrypt and load payload in-memory

•	 The loader reads one of its resource entries (encrypted data) which
corresponds to the RAT payload.

•	 The encrypted data is decrypted in the same way as the RAT
configuration, described in the previous part.

•	 The decrypted output is a valid PE file, which is loaded in the loader’s
own process memory.

4.	 Self-deletion

•	 As the last step, the loader deletes itself from disk. Although the file
should be locked as it is still a running process, the loader uses similar
code as the one outlined here16 to achieve this.

•	 This essentially results in the RAT residing fully in memory with no
traces left on disk.

22

TLP:CLEAR

Payload
The main payload reads the configuration file (Info.ini) that was written on disk by
the loader. The file is deleted immediately after it is read. The configuration data is
XORed with the XOR key being the file content’s first byte. An example of Info.ini
before and after decryption is shown in figure 13.

Figure 13. Info.ini (RAT config) before and after decryption

Figure 14. Expected handshake response (decrypted) from C2.

In the samples we have analyzed, this resulted in a configuration list with 7 key/value pairs:

•	 IV: Likely stands for InterVal. It’s used in the
calculation to determine how much time
certain sleep calls need to spend. Its value is
also passed onto the RAT’s loaded plugins,
which is described later.

•	 TP: Transfer protocol (set as tcp). However, it
is not used anywhere.

•	 GP: This value is not used anywhere. The
value was set as “Black1” across the samples
we analyzed.

One of the JelusRAT samples creates and checks for a mutex named “WindowsServer”, terminating itself if the
mutex already exists.

The RAT initializes its C2 communication by sending an initial handshake packet. The handshake packet follows
the same format as the configuration data described earlier, with the first byte being a randomly generated XOR
key. This packet format is used across all of the RAT’s C2 communication. The handshake packet contains a list
of 2 key/value pairs:

1.	 Main: Handshake string. In the samples we have analyzed, its value is hardcoded as “Happy new year!”

2.	 ClientBIT: Indicates the RAT’s bitness (32 or 64 bit). Taken from “OB” config value.

For the handshake to succeed, the RAT expects to receive the same handshake string “Happy new year!” as a
response, however inside a “Check” key instead of “Main”.

•	 IP: C2 IP address.

•	 SP: C2 port.

•	 ST: Likely stands for Sleep Timer, this value
is also used as a timer, but for other sleep
calls in the code.

•	 OB: Bitness of the payload (32 or 64 bit).
This data is used as value for the “ClientBIT”
value in the handshake packet sent to the
C2, which is described later.

23

TLP:CLEAR

The RAT supports commands such as:

•	 SetCritical: Sets itself as a critical process, i.e. if this
process is terminated then the Windows machine
will bluescreen. It calls the undocumented NTDLL
function NtSetInformationProcess with class
ProcessBreakOnTermination for this.

•	 UnSetCritical: Unset itself as critical process.

•	 Ping: the payload does a heartbeat check with the C2

•	 Sleep: change “ST” config value

•	 Interval: change “IV” config value

•	 Stop: terminate process

In addition to these commands, the RAT can also receive
a plugin (delivered as a DLL) from its C2 server. This
capability makes the RAT fully modular by allowing new
functionality to be loaded and executed on demand. We
assess that these plugins likely provide the core features
of the RAT, as the base implant is otherwise fairly limited
on its own. To load a plugin, the C2 sends a “SavePlugin”
command to the RAT, and to forward a command to a
plugin, the C2 sends a “Plugin” command to the RAT.
Although we were unable to obtain any plugin samples,
each plugin is expected to expose four export functions:

1.	 testPlugin

2.	 beginPlugin

3.	 endPlugin

4.	 processCommand

StarshellRAT
StarshellRAT is a custom RAT developed in C# (.NET). This RAT was
discovered in attack #2, where its loader (second variant mentioned
in earlier section “Trojanized supply-chain to deliver new RATs”) and
the RAT itself were hosted on the staging server we found.

Upon execution, it first fingerprints the victim and sends
information to its configured C2, including:

•	 OS version

•	 Unique victim identifier: MD5 hash of concatenated values for
processor count, username, machine name, OS version, IPv4
addresses of local machine, and OS drive’s total size.

•	 An empty string (likely some reserved value such as campaign
identifier, not implemented in observed instances)

•	 Username

•	 RAT’s configured sleep time

•	 IPv4 address(es) of local machine

These values are all concatenated together with a <==> string before
being sent to the C2.

After fingerprinting is completed, the RAT then waits for incoming
commands, with the following implemented capabilities:

•	 Execute shell command

•	 Write file to disk

•	 Exfiltrate file from disk to C2

•	 Take a screenshot

•	 Sleep for a specified duration

•	 Terminate itself (exit process)

Its C2 communication is implemented via a simple TCP client and
the data is compressed using gzip. The command to be executed is
determined by the first byte of each decompressed packet.

The name “StarshellRAT” was chosen by combining one of the
function names called “StarShell”, which is a typo for “StartShell” and
the malware’s category (RAT).

The RAT’s list of function names are shown in figure 15.

Figure 15. StarshellRAT function names

24

TLP:CLEAR

GopherRAT
GopherRAT is a custom Golang-based RAT developed with a range of capabilities. This RAT was
discovered through attack #2.

The RAT starts by establishing a TCP connection with its C2 and authenticating through a
custom handshake. The RATs config (C2 address and port) is XORed with a hardcoded 8-byte
key (357095A221F033AC), which is also used to encrypt/decrypt the C2 communication.

The custom handshake involves sending a randomly generated 16-byte value to the C2, with the
last 8 bytes XORed by the hardcoded XOR key and checking the response value received back
from the C2.

Once the handshake is completed, the RAT sends a unique victim identifier to the C2. The victim
identifier is constructed by generating a SHA256 hash of the victim machine’s network adapter
MAC address and concatenating the first 10-bytes of the hash value with the phrase “windows”. If
the MAC address could not be retrieved by the malware, the RAT sends a Korean error message
(translating to “MAC address not found”) to its C2. The error message is shown in figure 16.

The RAT sets a global variable as “windows” during its initialization. This variable is checked in
parts of the malware code. For instance, in one of the RAT commands (depicted in figure 17), the
RAT supports printing out the current working directory through a readlink operation on “/proc/%d/
cwd” only if the global variable is set as “linux”. In another part related to drive enumeration, the
RAT checks if the variable matches “windows”. This global variable and the “windows” string that
is concatenated to the victim identifier described earlier suggest a linux variant of this RAT could
exist in the wild.

Figure 16. Korean error message when MAC address can’t be retrieved

Figure 17. RAT command to print current working directory with Linux check

25

TLP:CLEAR

The RAT sets up a thread to do a heartbeat check with its C2 every 20 seconds and on its main thread
awaits to receive commands from its C2.

The commands supported by the RAT include:

1.	 Execute a shell command

2.	 Execute a binary

3.	 Exfiltrate/drop file from/to disk.

4.	 Exfiltrate folder

5.	 Enumerate logical drives (sending drive letter and list of root folders to C2)

6.	 Enumerate files/folders, sending information such as file attributes and child folders.

7.	 Set sleep time (in minutes)

8.	 SOCKS tunneling

9.	 Create directory, delete file or folder, and more…

One of the other noteworthy commands in the RAT is the ability to encode data (such as standard output
for executed commands) to CP949 (Korean language). We suspect this is to support operations on
systems with Korean locale.

The RAT and its C2 communicate their actions and response through the same custom packet structure.

The packet structure is defined as:

Packet struct {

Identifier uint8;

Length uint32;

Content []uint8;

}

Some of GopherRAT’s function names have been depicted in figure 18.

Figure 18. Example of GopherRAT function names

26

TLP:CLEAR

New tools
Custom .NET port scanner
This is a 32-bit .NET executable that serves as a custom port scanner. Andariel has developed
and used custom port scanners in the past17,18. Moreover, the executable was obfuscated with
“Dotfuscator” – an obfuscator used by Andariel in the past19. This executable was observed in
attack #1 as well as on the staging server.

As its arguments, the port scanner can take:

•	 -h (specific hosts or host range) REQUIRED

•	 -p (specific ports or port range) REQUIRED

•	 -c (connection timeout) OPTIONAL

•	 -t (thread count) OPTIONAL

•	 -f (write to file) OPTIONAL

An example of its usage has been shown in figure 19.

Figure 19. Output from port scanner usage example

BYOVD – Vulnerable Process Explorer Driver
One of the artifacts found on the staging server was a batch file (named bat.gif). The file’s content
is shown in figure 20. The batch file installs and runs a driver named “page.sys” as a service. It
would subsequently launch another custom executable called “taskhost.exe” with two arguments:
“-n” set as TvSvc.exe and “-t” set as File, after which it would unload and remove the system driver
as well as a batch file called “1.bat” (assumed to be the same batch file).

We were able to recover the page.sys file from the same staging server, which was a vulnerable
version (16.32) of the Process Explorer driver (procexp). This driver has been abused by threat
actors to kill EDR solutions in the past20.

In this instance, the driver was abused to target “TvSvc.exe” which belongs to TurboVaccine, a
South Korean cybersecurity vendor.

There have been no previously reported instances of Andariel using BYOVD technique to target
cybersecurity solutions, therefore this may be a new TTP in their arsenal.

Figure 20. Contents of the batch file

27

TLP:CLEAR

PetitPotato
This is a customized version of PetitPotato21, an open-source privilege escalation tool abusing
MS-EFSR protocol.

The tool was found on the staging server, and it has been customized in several ways:

1.	 It shows its usage through “helpme” command.

2.	 �To run successfully it expects 3 arguments, the first being the EfsId, the second being the
command to be executed, and lastly “helpme” string needs to be provided.

3.	 It prints out “welcome” when it doesn’t receive the appropriate number of arguments.

4.	 �The default named pipe has been renamed to “\\.\pipe\OSV\pipe\srvsvc” and its pipe file
name has been changed to “\\localhost/pipe/OSV/C$\access.log”. The changed portions
have been emboldened.

The threat actor employed obfuscated stackstrings in the same way as the JelusRAT samples
described in an earlier section called “JelusRAT”. Lastly, the help command revealed that the
original file name was “me.exe”. An example of “helpme” command output is shown in figure 21.

Figure 21. Example of command output for helpmeTLP:CLEAR

28

TLP:CLEAR

Other tools
The group leverages several other tools that were found in attack #1 and/or staging server. These have been summarized in the table below.

Tool Notes Sighting

A custom compiled executable for
Socks5Server22 proxy

This proxy tool has been used by Andariel
in the past23. Staging server

PuTTY link (plink) executable Plink has been used by Andariel in the past24,25,26 Staging server

Packed PrintSpoofer27 executable

This privilege escalation tool was packed by a
custom packer linked to Andariel (tracked as
UnderCrypt). PrintSpoofer has been used by
Andariel in the past28.

Staging server

Procdump This tool has been used by the group in the
past29,30 for credential theft.

Staging server and attack #1
(same exact hash)

Passview This tool has been used by the group in the
past31 for credential theft.

Staging server and attack #1
(same exact hash)

29

TLP:CLEAR

Conclusion

Acknowledgements

In this report we detailed two cyberattacks we discovered in 2025 that we attributed to the Andariel
group. We also provided analysis on some of the new malware and tools found in these attacks, as
well as inside a staging server that we attributed to Andariel at the time.

Although the latest malware, tools, and techniques we discovered shape a part of Andariel’s current
arsenal, the group still relies heavily also on their old malware, packers, tools, and techniques that
provide tracking and attribution opportunities.

While Andariel’s activity has historically been concentrated in South Korea, we continue to observe
the group conducting operations worldwide, as illustrated by the first attack described. Their targeting
and objectives have varied over time, some campaigns have pursued financial gain, while others
have focused on stealing information aligned with the regime’s priority intelligence needs. This
variability underscores the group’s flexibility and its ability to support broader strategic goals as those
priorities change over time.

The author of this report wishes to acknowledge the contributions made by his colleagues towards
this research, namely Bert Steppe and Neeraj Singh.

30

TLP:CLEAR

Appendices

Indicators of Compromise (IOCs) YARA rules
A full list of Indicators of Compromise (IOCs) can be found in WithSecure’s GitHub
[https://github.com/WithSecureLabs/iocs/tree/master/Andariel2025/].

1 https://www.microsoft.com/en-us/security/blog/2024/07/25/onyx-sleet-uses-array-of-malware-to-gather-intelligence-for-north-korea/#:~:text=to%20Onyx%20Sleet.-,TigerRAT,-Since%202020%2C%20Onyx
2 https://www.microsoft.com/en-us/security/blog/2023/10/18/multiple-north-korean-threat-actors-exploiting-the-teamcity-cve-2023-42793-vulnerability/#:~:text=000752074544950ae9020a35ccd77de277f1cd5026b4b9559279dc3b86965eee
3 https://asec.ahnlab.com/ko/73907/
4 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=the%20actors%20prefer%20netstat%20commands
5 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=credentials%20%5BT1003%5D.-,Discovery,-The%20actors%20used
6 https://blog.talosintelligence.com/lazarus_new_rats_dlang_and_telegram/#:~:text=Get%20RDP%20session%20reconnection%20information
7 https://asec.ahnlab.com/wp-content/uploads/2021/11/Lazarus-%EA%B7%B8%EB%A3%B9%EC%9D%98-NukeSped-%EC%95%85%EC%84%B1%EC%BD%94%EB%93%9C-%EB%B6%84%EC%84%9D-%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf
8 https://securelist.com/lazarus-andariel-mistakes-and-easyrat/110119/
9 https://blog.talosintelligence.com/lazarus-three-rats/
10 https://labs.withsecure.com/publications/no-pineapple-dprk-targeting-of-medical-research-and-technology-sector
11 https://asec.ahnlab.com/en/74835
12 https://asec.ahnlab.com/ko/73907/
13 https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp#L194
14 https://blog.talosintelligence.com/lazarus-collectionrat/#:~:text=The implant consists,actual malicious code
15 https://gchq.github.io/CyberChef/#recipe=SHA2(‘256’,64,160)&input=Vm5dJElVbllTXjJwYUpTNFNCZGdkdk9YRWFdMnlWMWg
16 https://github.com/LloydLabs/delete-self-poc
17 https://asec.ahnlab.com/wp-content/uploads/2021/11/Lazarus-%EA%B7%B8%EB%A3%B9%EC%9D%98-NukeSped-%EC%95%85%EC%84%B1%EC%BD%94%EB%93%9C-%EB%B6%84%EC%84%9D%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf
18 https://blog.talosintelligence.com/lazarus-magicrat/#:~:text=Lightweight port scanner
19 https://asec.ahnlab.com/en/63192/
20 https://news.sophos.com/en-us/2023/04/19/aukill-edr-killer-malware-abuses-process-explorer-driver/
21 https://github.com/wh0amitz/PetitPotato/tree/master/PetitPotato
22 https://github.com/earthquake/Socks5Server/tree/master/Socks5Server
23 https://asec.ahnlab.com/en/73924/#:~:text=though%20open%2Dsource-,Socks5%20proxy,-tools%20have%20also
24 https://www.security.com/threat-intelligence/stonefly-north-korea-extortion#:~:text=available%20SSH%20client.-,Plink,-%3A%20A%C2%A0command
25 https://blog.talosintelligence.com/lazarus-three-rats/#:~:text=tools%20such%20as-,PuTTY%27s%20plink,-.
26 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=such%20as%203Proxy%2C-,PLINK,-%2C%20and%20Stunnel%20as
27 https://github.com/itm4n/PrintSpoofer
28 https://asec.ahnlab.com/en/59073/#:~:text=MS%2DSQL%20Server%2C-,PrintSpoofer,-was%20used%20for
29 https://asec.ahnlab.com/en/74039/#:~:text=installed%20Mimikatz%20and-,ProcDump,-during%20the%20infiltration
30 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=PLINK%20%5BT1572%5D-,ProcDump,-%5BT1003%5D
31 https://asec.ahnlab.com/en/74039/#:~:text=information%20from%20NirSoft%E2%80%99s-,WebBrowserPassView,-and%20web%20browser

YARA rules can be found in WithSecure’s GitHub
[https://github.com/WithSecureLabs/iocs/tree/master/Andariel2025/].

TLP:CLEAR

31

TLP:CLEAR

About WithSecure

WithSecure is Europe’s cybersecurity partner of choice. Trusted by IT service providers, MSSPs, and
businesses worldwide, we deliver outcome-based cybersecurity solutions that protect mid-market
companies. Committed to the European Way of data protection, WithSecure prioritizes privacy, data
sovereignty, and regulatory compliance.  

Boasting more than 35 years of industry experience, WithSecure has designed its portfolio to navigate the
paradigm shift from reactive to proactive cybersecurity. In alignment with its commitment to collaborative
growth, WithSecure offers partners flexible commercial models, ensuring mutual success across the
dynamic cybersecurity landscape.   

Central to WithSecure’s cutting-edge offering is Elements Cloud, which seamlessly integrates AI-powered
technologies, human expertise, and co-security services. Further, it empowers mid-market customers
with modular capabilities spanning endpoint and cloud protection, threat detection and response, and
exposure management.  

WithSecure Corporation was founded in 1988, and is listed on the NASDAQ OMX Helsinki Ltd.

