eeeeee

WithSecure STINGR Research

To the past and
beyond: Andariel’'s
latest arsenal and

cyberattacks

Mohammad Kazem Hassan Nejad
January 2026

TLP:CLEAR

vV /

LT V=TT 03 1] 1= T /PP 3
1 100 LW o 1 [] o T a
AttacCK #1: PUDIIiC/LEgal SECTON IN EUNO P . .iuiiuiiiiiitie ittt sre e rae s s s srasra e a s s srasaasa s asanaasansansansansansnnansnnsnnsnnsnnnnns 5
=T 1€ = £] U o [5
LU IS 10T Tr= o] VA1 11 1= 1= P 6
LR VIS {0 alr= o] VA1V 0] (=12 Co (01717 o 7
] = T = [T = 8 (0] (o = 10
LI (200> e (0 T = o 1= o F= 1Y/ o 11
[NtrUSION TIMIE ZONE AN SIS ..o i titiitiii ittt e ettt et e e e e e et et e e s e e s e aeea s ea e e e e e s e e s s e a e e e e e s e e s e ea s e s e e s e a e e n e e s s s s eaeen s e eanenns 12
Attack #2: ERP software in SOUth KOI@a cc s re s s s s s s s ra s s e ra s nsmrnsnnmsasamnm s snmnnrannmrnrnnnns 13
= T 1€ = {0] U o 13
TrojaniZed SUPPIY-CRaIN 10 QeIIVEI MEW R AT S ... et e e et e e et s e et et e e a e e s e e s et ea e s e s s eneensensanenns 13
Other componNeNnts INKEA tO the CaMIPDAIEN.......cu i ettt e et et e e et e et s e ea s e ea s e e s s e s s s e s s ea s e enssnanenns 14
Discovery and analysis of Andariel’s staging serverand arsenal..........c.cccvioiiiiiiiiiieie i i i v v s 19
2T 1€ = 0 111 T 19
LT A I P 19
ST (0 0 £ P 26
1 1= 0 (0 0] £ PR 28
00 o o {013 Lo T o N 29
AN o g Lo A1V =0 ==Y 3 0 1=) PP 29
Y 0T 0 1= o Lo o1 =T 30
Talolfex=ideT g o] M @70 an] o]0] alEsT=E L L 30
D7 0 N (0] = 30

TLP:CLEAR

vV /

WithSecure proactively identified and notified a
European customer belonging to the public/legal
sector of a breach attributed with high confidence to
the Andariel group, a state-sponsored cyber group
linked to the Reconnaissance General Bureau
(RGB) 3 bureau of Democratic People’s Republic
of Korea (DPRK).

The attribution was based on the threat actor’s usage
of unique malware, such as TigerRAT, command
execution patterns, infrastructure linkages, and other
technical and non-technical evidence that linked it to
previous reports of Andariel activity.

We assess that the primary goal of this breach was
cyberespionage. This was determined based on the
group’s past objectives and the intrusion activity, but
most notably the threat actor accessing documents
relating to anti-money laundering on the victim host.
DPRK s notoriously known for its money-laundering
activity to evade international sanctions.

TLP:CLEAR

This investigation led WithSecure to the discovery of another set

of attack conducted by this group against an Enterprise Resource
Planning (ERP) software in Republic of Korea (ROK) in 2025.
WithSecure determined that this particular ERP software had been a
previous target of Andariel in 2017 and almost certainly again in 2024.

This further on led to the discovery of three new, previously
undocumented RATs that WithSecure attributes to Andariel, namely
StarshellRAT, JelusRAT, and GopherRAT.

The investigation also led WithSecure to discover a staging server
used by the group. Through this staging server, we were able to find
additional artifacts related to both attacks. We also discovered a mix of
new and old techniques and tooling used by the group to conduct their
latest attacks, including privilege escalation tools such as PrintSpoofer
and PetitPotato, and the abuse of the trending bring-your-own-
vulnerable-driver (BYOVD) technique that is used by other threat
actors to kill AV/EDR products.

vV /

Introduction

In 2024 and 2025, some of the notable cyber activities linked to the Democratic People’s Republic of Korea
(DPRK) nexus have primarily revolved around their IT worker activities. While the regime continues to
advance and leverage this front, their traditional cyber means remain unabated.

In 2025, WithSecure discovered two cyberattacks that we attributed to the Andariel group, a state-sponsored
cyber group linked to the RGB 3rd bureau of Democratic People’s Republic of Korea (DPRK). During our
Investigation, we also discovered a staging server used by Andariel. We were able to pull artifacts from it
during its uptime.

Throughout our research, we identified several new implants, tools, and techniques that shape a part of
Andariel’s latest arsenal. These include new remote access trojans (RATs) such as JelusRAT, StarshellRAT,
and GopherRAT, as well as tools and techniques such as a custom port scanner, a PetitPotato sample, and
abusing a vulnerable driver to target AV/EDR products.

Although we discovered new additions to their arsenal, the group still heavily re-uses their older custom
malware, packers, tools, TTPs, and overall operational patterns. These generate identifiable footprints that
provide cybersecurity practitioners with ample opportunities to track and attribute the group’s activity.

This report provides details on the two cyberattacks we investigated and analysis of the artifacts we found
across the two attacks and on the staging server. WithSecure has engaged governments and select partners
with advanced copies of this report.

TLP:CLEAR

vV /

Background

In 2025, WithSecure proactively identified and notified a European
customer about a set of highly malicious activity occurring on a host

In the victim estate. The threat actor had established a foothold on the
host by setting up an unknown binary (hereon called “the implant”) as
a scheduled task and perpetrated their attack, hands-on, by launching
a set of commands and activity through this established implant.

WithSecure initially identified and notified the customer about this
Intrusion while conducting a proactive threat hunt. Almost a month
later, WithSecure again identified malicious activity on this host
originating from the same implant. Upon notifying the customer again,
the customer quickly acted and isolated the affected hosts.

Upon receiving a copy of the implant from the customer, WithSecure
quickly identified the implant as a TigerRAT sample. TigerRAT is a
custom remote access trojan (RAT) exclusively linked to the Andariel
group since 2020%. The sample was packed by a custom packer
named TomCryptor, which has also been exclusively used in the past
by Andariel to pack their custom payloads, including HazyLoad?,
modified AsyncRAT clients, as well as other TigerRAT samples.

Upon further analysis of the technical and non-technical evidence
gathered, such as the unique malware and packer used, the implant’s
C2 infrastructure linkages, and the overall intrusion activity patterns,
WithSecure was able to attribute the attack with high confidence to
the Andariel group.

TLP:CLEAR

On one of the first few days of hands-on activity, the threat actor
accessed documents related to anti-money laundering on the host.
Given DPRK s notoriously known for its money-laundering activity
to evade international sanctions and Andariel’s past ‘actions on
objectives’, we determined the primary goal of this intrusion was
cyberespionage. However, as the threat actor was expelled from the
victim estate amid conducting their attack and moving laterally, their
ultimate goals may not have been fully realized.

The initial infection vector could not be determined, as WithSecure’s
Endpoint Detection and Response (EDR) solution was deployed after
the customer had already been compromised. However, our analysis
revealed that the implant was set up as a scheduled task 80 days prior
to its initial use. There is no clear evidence indicating that any other
activity took place on the host from the time the implant was added

as a scheduled task (80 days earlier) until the first hands-on activity
detected by WithSecure’s EDR solution.

Day -2 (-80 days)

&

Implant’s scheduled
task start date

Day 0 (0 days)

Initial network recon and
drive discovery via implant
(START)

Day -1 (-9 days)

N\
~
R

WithSecure EDR agent
installed on host
— start of telemetry

Day 1 (+4 days)

I

Custom tool execution
likely for drive and file
enumeration

Day 2 (+7 days)

+—h
=/

Artifact removal related to

previous day

Day 4 (+11 days)

AR

4 S
- 0

Some further
activity including:
ping, RDP session
listing, and more.

Day 6 (+52 days)
e

==

Impacket and RDP usage
Lateral movement to adjacent host

Some further activity including: credential
aCCess via passview, port scanning, and more.

Customer isolated hosts (END)

Day 3 (+9 days)

=)
=@

Access documents related to anti-money
laundering

Further activity including: network recon, full
AD dump, dump security registry hive, RDP
session listing, user/computer information
gathering, and more.

Day 5 (+50 days)

50

Impacket usage

Further activity including:
LSASS dump via
procdump, ISCSI listing,
and more.

vV /

Intrusion activity breakdown

Most of the malicious activity was conducted through the established implant. However, during the final two days of the intrusion, we observed additional actions executed over RDP and Impacket, likely facilitated by a

reverse proxy or tunnel created via the implant.

On the final day, the threat actor also briefly moved laterally to an adjacent host, deploying the same implant as a scheduled task and executing several tools and commands.

Persistence via scheduled task

The threat actor established persistence for the implant on the hosts via scheduled
tasks. Some related commands included:

1. Checkif scheduled task exists: schtasks | findstr XXXX

2. Create scheduled task: schtasks /create /th XXXX /tr XXXX /sc daily /st
XX XX: XX /ru system

3. Force run scheduled task (starting the implant right away): schtasks /run /tn
XXXX

Credential dumping

The threat actor accessed and dumped various credentials through different
methods. These set of actions enabled wider user and domain compromise. Some
methods included:

1. Full AD dump via ntdsutil: ntdsutil “ac i ntds” “ifm” “create full c:\ntds” g g
2. Security registry hive dump: reg save hkim\security c:\programdata\security

3. LSASS dump through procdump: pd.exe -accepteula -ma Isass.exe c:\
programdata\lsa.dmp

4. Browser credential access via PassView: The threat actor dropped and
executed PassView (Nirsoft's WebBrowserPassView), a tool which allows the
threat actor to steal browser credentials. Andariel has used this software in past
campaigns as well3.

TLP:CLEAR

Network discovery/recon

The threat actor checked the host’s network configuration and actively scanned for
other hosts in the victim’s network as one of their primary objectives.

This activity was performed through several methods. Some of the executed
commands included:

1.

N

ol gs

2E

powershell “Import-Module ActiveDirectory; Get-ADComputer -Filter * -Properties
IPv4Address, OperatingSystem, LastLogonDate | Select IPv4Address, Name,
OperatingSystem, LastLogonDate | Sort IPv4Address | Format-Table -AutoSize”

ping -n 2 <ip/host>

netstat -naop tcp

netstat -naop tcp | findstr 445

netstat -naop tcp | findstr ESTA

netstat -naop tcp | findstr <3rd-4thIPv4Octet>

ipconfig

. arp-a

Although a common command, the Andariel group is particularly known to use netstat
command quite extensively in their attacks®.

The threat actor also relied on a custom port scanner to scan ports for HTTP (80),
HTTPS (443, 8443), SMB (445), RDP (3389), as well as 2 custom ports (5000,5001)
across internal IP ranges. The custom port scanner (hamed ps.exe) was dropped
and executed on the hosts through the implant. The port scanner is detailed in a later
section called “Custom .NET port scanner”.

vV / 8

Drive and disk discovery Modify Windows Defender settings

The threat actor looked for connected disks and drives via WMI and for iISCSI storages. The threat actor excluded one of the paths where some of their tools were staged:
These set of actions were most likely done as a pre-cursor to enable data theft and _ _

exfiltration of sensitive documents. This was achieved through commands including: 1. powershell Get-MpPreference | findstr Exclusion

1. iscsicli sessionlist 2. powershell -Command Add-MpPreference -ExclusionPath “C:\Windows”

2. wmic diskdrive get size,model The threat actor also disabled Windows Defender before executing procdump, re-enabling

. it af ;
3. wmic logicaldisk get filesystem,name,size It afterwards

n it ke i EriETeE, e e, S 1. powershell Get-MpPreference | findstr DisableRealtimeMonitoring

2. powershell Set-MpPreference -DisableRealtimeMonitoring 1

At the early stages of the attack, right after running disk and drive discovery
commands, the threat actor dropped and executed a custom tool named “fm.exe”
(renamed to splwow.exe) via the implant. The custom tool could not be recovered from
the host, but we suspect this was a custom tool to enumerate a target drive.

3. pd.exe -accepteula -ma Isass.exe c:\programdata\lsa.dmp

4. powershell Set-MpPreference -DisableRealtimeMonitoring O

Such assessment is based on factors such as:

The tool was executed in early stages The tool was dropped as “fm.exe”, which
following a disk drive listing via WMIC may be an abbreviation for “file manager”
— using abbreviations is a common pattern
with some Andariel campaigns.

The threat actor used the implant to

directly access sensitive (anti-money e

We identified a tool referenced in an Andariel
report® that matched several characteristics
of this tool. We were unable to obtain a
sample to confirm the connection.

laundering) documents, including file
paths that were not previously known
to them.

The tool was invoked using a command
that included a drive letter; moreover,
the name of the produced output file
iIncluded a “.mfs” extension with file
format being compressed ZIP (PK
header). An example command line is:

splwow.exe -s i:\ -d c:\programdatal\i

TLP:CLEAR

vV /

Gather information on user/machine

As part of their overall information gathering and

reconnaissance activities, the threat actor gathered information

on the victim host and user accounts. Some executed
commands included:

1. systeminfo

2. whoami

3. query user

4. netlocalgroup administrators

5. net user

RDP-related activity

The threat actor queried RDP sessions through commands
such as:

1. gwinsta

2. wevtutil ge Microsoft-Windows-TerminalServices-
LocalSessionManager/Operational /c:5 “/q:*[System
[(EventlD=25)]]” /rd:true /f:text

* This command has been used by Andariel in the past®

The threat actor leveraged RDP to conduct a very small portion
of their attack, primarily to logon into hosts, drop and execute
several tools, and run some commands. It is unclear why

the threat actor switched over to RDP when the implant was
already established on a host (or could be established through
other lateral movement methods).

TLP:CLEAR

Modify time attributes

The threat actor deployed an unknown tool (named “t.exe”)
onto the hosts through the implant (first host) and RDP
(adjacent host). The tool could not be recovered from the
affected hosts. We suspect t.exe was a custom tool to modify
the implant’s time attributes; this assessment was based on:

1. A previous Andariel report” highlights a time modification
tool that matches in terms of file name and command line
pattern.

2. The tool was dropped as “t.exe”, which may be an
abbreviation for “time” — using abbreviations is a common
pattern with some Andariel campaigns.

3. After a few seemingly unsuccessful attempts to execute the
tool with the right file path as its command line arguments,
the threat actor immediately used PowerShell to modify the
time attributes instead.

The executed PowerShell commands were:

1. powershell (Get-ltem “XXXX”).CreationTime = (Get-Date
“XXXX”)

2. powershell (Get-ltem “C:\TestFolder”).LastWriteTime =
(Get-Date(‘XXXX’))

3. powershell (Get-ltem “XXXX”).LastWriteTime = (Get-
Date(‘XXXX’))

These set of actions were likely to further blend the implant
Into the victim environment and make it appear as an older
component of the system.

Artifact removal

The threat actor consciously removed artifacts, such as tools
staged onto the hosts and output files generated via the tools or
executed commands. To do so, the threat actor leveraged:

1. Remove directory command: rd /S /Q C:\ntds
2. Delete command: del <filename>

3. Implant’s built-in functionality

These set of actions were likely aimed at hindering incident
response and malware analysis by removing forensic footprints —
especially as Andariel often relies on custom tooling and malware.

vV /

Miscellaneous commands

Throughout the attack, the threat actor also used a variety of other commands for
different purposes. These included:

Read file content: type <filename>
* For example: To read port scanner output file directly via the implant.
Check file presence: dir <filename>

* For example: To check whether the threat actor’s own tools or generated output
files exist on disk (often precursor to removing them)

Kill running process: taskkill /f /im <filename>

* For example: To stop the threat actor’s own running processes, such as the port
scanner.

Rename file: move <original> <new>

* For example: To rename files dropped with “.gif” or “.ex” extensions to their “.exe”
equivalent.

Check running process: tasklist | findstr <processName or process|D>

* For example: To check if the threat actor’s own processes, WithSecure-related
processes, or other service processes are still running.

Check running process (2nd variation): powershell Get-Process
<processName> | Format-List Path

* For example: To check if WithSecure-related processes or other service
processes are still running.

Check local system time: time /T

TLP:CLEAR

Staging folders

The threat actor staged files in various folders including:
1. Desktop directory

2. C:\ProgramData\

3. C:\Windows\

Some of the staged tools and malware were dropped with “.ex” or
“ gif” extension before being renamed to their “.exe” equivalent.

10

vV / 11

Threat actor’s behavior

Andariel is notoriously known for making typographical errors (typos) in the set of hands-on commands they execute®®. This
behavior was observed in this incident as well; examples of these typos were (boldened and underscored):

* regquery
HKLM\SYSTEM\CurrentContorlSet\Control\SecurityProviders\WDigest

Note: This long command with the same exact typo was made on two separate days, potentially highlighting it was

copy-pasted by the operator from perhaps a playbook that contained the typo.

« tasklsit | findstr pd.exe

« taskkill /f/im fs.exe

Furthermore, another noteworthy behavior observed in this incident was the re-execution of certain commands via the implant
hours or days later, for example:

e Listing RDP sessions: wevtutil ge Microsoft-Windows-TerminalServices-LocalSessionManager/Operational /c:5 “/q:*[System
[(EventlD=25)]]” /rd:true /f:text

 Listing RDP sessions (2): qwinsta

e AD dump: ntdsutil “ac i ntds” “ifm” “create full c:\ntds” g g

e Checklocal system time:time /T

It is sensible for some of these commands to be re-executed, however actions such as re-executing the AD dump command may
be redundant and could highlight either:

 There are multiple operators that work on a single intrusion and carry out actions through the attack lifecycle.

« An operator may be handling multiple intrusions simultaneously, thus forgetting what previous steps they may have taken in any
one particular intrusion.

TLP:CLEAR

vV /

Intrusion time zone analysis

The scheduled task was set to start the implant at 10:05 (adjusted to UTC+9 - Pyongyang time). Furthermore, the intrusion activity timestamps also aligned well with the UTC +9 time zone. The threat activity per time of
day (adjusted to UTC+9) has been depicted in figure 2. Reviewing activity by time of day showed that most of the activity occurred between 13:00 to 0:00 (UTC+9), which matches intrusion activity time linked to previous
Andariel/DPRK activity'®. The activity was carried out between Monday and Friday.

Combined #actions per time of day (UTC+9 time)

13 0 0 0 0 0 0 0 0 0 0 0 0 40 773 428 32 0 120 127 0 16 130 40

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

TLP:CLEAR Figure 2. Threat activity per time of day (converted to UTC+9)

vV /

Trojanized supply-chain to deliver new RATs

WithSecure identified two distinct variants of the trojanized component in the ERP software.

The first variant delivers a new implant called JelusRAT, while the other delivers another new implant called StarshellRAT.
The two implants are described in further detail in later sections called “JelusRAT” and “StarshellRAT”, respectively.

Background

For the first variant, the trojanized component contained one additional method added by the threat actor which renamed two

The investigation of the attack described in the previous section files (JelusRAT components - also fetched from the file server during the setup/update process) and launched one of the files
“Attack #1: Public/Legal sector in Europe” led WithSecure to the (the JelusRAT implant). The code snippet for this added method is shown in figure 3. The two fetched JelusRAT component
discovery of novel tooling and malware linked to another set of names also masqueraded as part of the ERP software to blend in with the rest of the software components, making them less
attack conducted by Andariel against an Enterprise Resource likely to be noticed.

Planning (ERP) software in Republic of Korea (ROK) in 2025.

Through our research and public reporting!!, WithSecure
determined the ERP vendor’s particular software had been a
target of Andariel in the past, particularly in 2017 and almost
certainly again in 2024. In these two instances, it became
apparent that the file server and update mechanism of the ERP
software were compromised and trojanized to distribute malware
to downstream victims.

By piecing together and analyzing artifacts and components
we found related to the latest campaign, we assess the threat
actor followed a similar attack pattern by compromising the file
server(s) the ERP software would fetch its components from
(during its setup and/or update process), and by delivering a
fileserver-hosted trojanized version of one of the software’s
primary components, it would infect downstream victims with
two new RATSs.

WithSecure was unable to determine the full scale or impact

of this campaign; however, the ERP vendor is regarded

as one of South Korea’s leading ERP providers, delivering
solutions to more than 2,200 customers across key sectors
Including the public sector, semiconductors and equipment, IT,
pharmaceuticals, and medical devices.

Figure 3. Code portion from malicious method added to the first variant

TLP:CLEAR

For the second variant, the trojanized component can be categorized as a downloader, as it dynamically
fetches an additional assembly payload from a remote address and executes it in-memory. To fetch the
assembly, a custom header called “Authorizations” needs to be present in the HT TP request, with its
value being the first IPv4 address of the victim’s machine. To fetch the IPv4 address, the threat actor
Implemented another custom method within the trojanized component called GetLocallPv4. At the
time of our analysis, the payload fetched from the remote address was exclusively the newly identified
StarshellRAT malware. The code snippet of the primary method added by the threat actor to this variant
Is shown in figure 4.

Figure 4. Code portion from malicious method added to the second variant

Other components linked to the campaign

We discovered several other malicious components that likely enabled the compromise of the file
server(s) and/or are otherwise linked to the wider campaign against this particular ERP software
and/or vendor. These components are attributed to Andariel with varying confidence.

TLP:CLEAR

14

Setup list builder

We discovered a .NET application that appeared to function as a custom setup list builder for the

ERP software, at a high-level creating a configuration (XML) file that contained entries for each of the
software components that would be hosted on the file server. The format of the configuration file exactly
matched the response format for one of the ERP’s file servers’ APl endpoint methods used by the
software during setup and/or update. A code snippet from the setup list builder is shown in figure 5.

Figure 5. Code portion from setup list builder

vV /

This sample was hosted on an Andariel staging server (described in

a later section called “Discovery and analysis of Andariel’s staging
server and arsenal”) that was also linked in other ways to Andariel and
this particular campaign. We assess the sample was custom built by
the threat actor.

The tool’s PDB path contained direct references to the ERP software
and vendor, but more importantly included a Korean phrase “Idl|2£-523”
which translates to ‘distribution attack’. This phrase and overall
functionality of this tool increased our confidence that the attack vector
employed by the threat actor to compromise downstream victims with
a RAT was a supply chain attack involving the ERP’s file server and the
software’s setup/update mechanism.

Custom downloader

One of the files we discovered was a .NET assembly (implemented
as a DLL) that functioned as a downloader. It contained a single
method called Client.Execute that receives four arguments, none of
which were actually used in the method implementation itself.

The code would then fetch a payload from a remote host by
establishing a TCP connection over port 8080 and sending the
string “cliAuth” as a message to the remote host in order to retrieve
the payload. The payload would be stored on disk (C:\Windows\
Temp\svccli.exe) and launched by the downloader. Finally, the
method returned a “Success” string. The implemented method is
shown in figure 6.

TLP:CLEAR

Figure 6. Custom downloader method implementation

vV /

We were unable to fetch the next-stage payload at the time of our analysis. However, the remote host was also simultaneously used as a C2 server for a SmallTiger implant (custom malware linked
to Andariel since 202412) and another new undocumented Golang-based RAT which we attribute to Andariel as well. The Golang RAT has been detailed in a later section called “GopherRAT”.

We attributed this sample to Andariel and the ERP attack campaign based on PDB references to the ERP vendor, the remote host serving as a C2 server for another known Andariel implant
(SmallTiger), and several other factors. The infrastructure and malware relations are depicted in figure 7.

Figure 7. Infrastructure and malware relationships for custom downloader and GopherRAT
TLP:CLEAR g > >

16

vV /

Webshell - ASPXSHELL

We discovered another .NET assembly (implemented as a DLL) which had
a primary method called Encrypt, that takes in four arguments. It launches
a windowless process using the value provided via the third argument. It
decrypts the third argument via AES-256 and splits the decrypted content
using a “~I~” separator. The first portion of the string is meant to contain the
process filename and the second part, the command line argument. The
AES key Is stored as a variable called “SendMessageNo” and its value is
“A%F#OdFSP8f5DFsfw123978%asfqg” fbon”.

The method ultimately returns a string either containing an error message
(exception), launched process’s standard error output, or standard output (if
process was launched successfully) with other variables such as the process
filename, argument, and AppDomain.CurrentDomain.BaseDirectory.

The code snippet for the “Encrypt” method is shown in figure 8.

The sample was hosted on an Andariel staging server. Presence of the
word “aspxshell” in the PDB path and the file version information highly
suggest that it is a webshell-like component. Furthermore, the class
name masqueraded as a component of the ERP software and the PDB
path contained direct references to the ERP software and vendor name,
suggesting it was a custom component built specifically for the attack
campaign against this particular ERP software/vendor.

TLP:CLEAR

Figure 8. Code snippet for Encrypt method

vV /

Webshell - TigerShell

The last set of components we found likely linked to this campaign
were two ASPX webshells. These were uploaded to VirusTotal

by a user who submitted some unique components linked to the
campaign, which have been detailed in preceding sections. These
two webshell files were uploaded within the same timeframe as some
of the other samples.

Through a retroactive hunt, we were able to find four other variants for
this webshell — all submitted from South Korea. These samples were
Implemented as JSP webshells rather than ASPX.

This collection of webshells were almost identical in implementation
(even across the two languages) and collectively supported
commands such as:

« Executing a shell command
Executing a binary
Uploading and downloading a file
Testing network connectivity to another IP/port

Heartbeat — checking if webshell is still active

For authentication, the webshell checks if the HTTP request contains
a “mode” parameter and if its value matches a hardcoded password.
The passwords found across all the samples were either “hellohaha”
or “zse4321gaw”.

TLP:CLEAR

Incoming commands can be passed to the webshell via the request’s “ArticleBody” parameter. The “ArticleBody”
content would be decoded from Base64. The decoded content would then be XORed with a hardcoded key. The key was
1021293033366069664347473831 (hex value) across all samples.

Some detected samples contained additional JSP implementation details. These included a code snippet that encapsulated the
webshell’s response within a form-data container, with the boundary ID hardcoded as 92ee0636f37ac8926354137bc151dabd.
The form data’s “name” parameter was set as “image” and its filename as “tiger.jsp”. This is depicted in figure 9.

Figure 9. Webshell response encapsulated in custom form-data

Andariel uses custom HTTP requests to implement network communication in some of their malware, particularly using multipart
form-data. Also, the reference “tiger” has been used by Andariel in the past, for instance in their SmallTiger and TigerRAT
Implants. However, tiger is also a cultural symbol linked to the Korean peninsula and is by no means an exclusive term used by the
Andariel group.

Therefore, while we believe these webshells were likely linked to Andariel activity, the collected evidence was not substantial
enough to support our attribution, therefore this remains as a low-confidence attribution at the time of writing.

vV /

Background

WithSecure discovered a staging server while analyzing the C2 infrastructure linked to the
TigerRAT implant used in attack #1. WithSecure was able to pull some of the artifacts hosted on
the staging server during its uptime.

We found:

1. Some of the tools (including custom ones) hosted on the server were the same tools (and
exact hashes) used by Andariel in attack #1.

2. Some of the other tools and components hosted on the server were linked to attack #2.

3. The staging server was also used to stage and act as a C2 for some of Andariel’s implants,
Including TigerRAT and StarshellRAT samples.

These linkages as well as other patterns led us to attribute the staging server and artifacts hosted

at the time to Andariel. Some of the infrastructure and malware relations are depicted in figure 10.

In this section we will detail some of the unique tools and malware we discovered through our
Investigation into the staging server as well as the two attacks described in earlier sections.

New RATs

JelusRAT

JelusRAT is a sophisticated 2-stage RAT that was leveraged by Andariel in attack #2. The RAT
requires an accompanying key file (called key.ini) to execute successfully.

The RAT is written in C++ and consists of a custom loader that decrypts the payload (main RAT
component) from its resource section and loads it in its own process memory.

TLP:CLEAR

Figure 10. Links between Andariel’s C2 infrastructure and malware

19

vV /

Both the loader and the payload employ obfuscated stack strings to obscure their embedded strings

and use SIMD instructions to de-obfuscate them using various 16-byte XOR constants. An example et 00000001 40002020 murmurhashza proc near . CODE XREF: sub 145002504554
IS shown in figure 11, where the result is an ANSI string “WS2_32.dlI”. oy Ao o od e ;SUb_1A000IDAGESLED -
repeaRaald4epa2C23 mov rlld, rad
: 0OPR0EA140002C26 mowv réd, edx
s BEEEEER1ARRR2C 20 cmp edwx, 4
: 000080140002C2C jl short murmurhash2a_skip_dwords
s BEEEEEA14ARRR2C2E MY rled, rod
text:000000014001550E mov rsi, 254B9E4AEBCSE@4AN O oooon14aon s e e
text:800000014008155E8 mov [Fsp+398h+var 368], rsi . : GBBPOBO140002C 38 neg eax
. text:20008001488155ED Mow rax, [rsp+398h+var 368] - f:g:ggggigggigg 1EE rad, [ro+rax®4]
. text:PEAAAAA1400155F 2 mov gword ptr [rsp+398h+var 348], rax e o eee0eR14000 2t e e
text:aa0e00814808155F 7 Mo rl2, eDes253728DE9838086h : : GOPEPOR140002C40 murmurhash2a loop dwords: ; CODE XREF: murmurhash2a+454 7
text:0000000146615601 mow [rsp+398h+var_368], ri2 e trul s rex], SEDIE9SSE
text:BEEAA00140015605 mov rax, [rsp+398h+var 368] L o PEePOn140002Cs ul 114, SED1E99SK
text:ee002001420156006 Mow gword ptr [rsp+398h+var 348+3], rax : : 9BORBAR140002C51 mov edx, eax
.text:0000000140015618 MoV rdi, 4165AC79B4F7B31Dh - Lext:8008000148002053 shr edx, 24
. . P BEEEEEal4aBR 2050 Kor edx, eax
LTextefeaaee148681561A Mo [I"SF""BE'EI"I""-.-‘EI F_BEE] ¥ rdi . . BEEREERLABREICSE imul edx, SEDLEDGSh
text:eaea088148681561F Mo rax, [rsp+398h+var_363] : : 6000080140002C5E xor rild, edx
text:PEERER14ABD15624 mov gword ptr [rsp+398h+var 98], rax O oooonldnonaces 5.;? o i et .
.text:000000014801562C Mo rbx, BDES2372BDEY35464h PN —— ne T
tewt : AREARRE 110015636 Mo [rsp+398h+var 368], rbx : : GOPEBBO140R2C67 murnurhashZa skip dwords: ; EF: murmurhash2a+Ct
. text: BEOOBOE14001563E mov rax, [rsp+398h+var 368] e Xor Ehe e
.text:0000000140015640 mov qword ptr [rsp+398h+var 98+8], rax text:POPOBEELABOB2CED - short murmurhashla res
text:2200200148015648 movdga »xmm@, [rsp+393h+var 343] : 1800080 140002C6F rad, 1]
. text:000000014001564E pxor xmm@, [rsp+398h+var_98] O oonon1da0n s Short murmurhEshzs res
text:0000000140015657 movdga [rsp+393h+var 343], xmm@ ; "WS2 32.d11" . : 6BBPOBO140002C 79 j short murmurhash2a_finalize
: BBEEE00146662C76 edx, byte ptr [rcx+2]
P BeRREEal4aRR2CTF edx, 16
P BEREEEal4aRR2CE2
: : 200B00014808082C82 murmurhash2a rest 2: ; CODE XREF: murmurhash2a+531]
Figure 11. String obfuscation example . : BBOBERE14BBR2CE2 byte ptr [rex+l]
P BEREEEal4aeR2CE0 8
P BeeagagEaaldaan2CE9 eax
P Beegaagealdaan2CEE
_ _ _ _ . _ : : 38680081488082C8E murmurhash2a rest 1: ; CODE XREF: murmurhash2a+4DT
This obfuscation pattern has been observed across various Andariel-linked malware that WithSecure has - Fext : 0000000140002 58 byte per [rex]
analyzed, such as the one explained in a later section called “PetitPotato”. text:oeeoooelsppecoe o |
: : 86000008148802C98 murmurhash2a finalize: ; CODE XREF: murmurhash2a+5971]
P BEEEEEA14A88R 2008 : de,_SEDIEBQSH
Furthermore, both components resolve their import functions dynamically using the same approach. At a ot 0000000140002C00 v
high level, the malware computes a MurmurHash2A? value for the function name it wants to import, iterates et taoeatas .
through the target library’s export table, and compares the calculated hash against the hash of each exported et 00000001 40002CA - e bareneh
name. The hashing function used during dynamic import resolving is shown in figure 12. In this example, the g o
constant 0Ox5BD1E995 can be seen, which is typical for the 32-bit version of MurmurHash?2 and its variants. o amoe e ey
VBeeEEEald4eeE 2CBC] ecx, SBD1E995h
. L . .) .) . . : PRORERA14B0A2C (2 ' SBD1E995h
This method of dynamic import resolution is atypical. A more commonly adopted technique in malware is text :0000000140002CC8
. . . . T . repaaRaaldapa2CCA edx
to store only the hash values of desired APIs within the sample itself, avoiding the need to calculate them at text :0080000140802CCC 13
c c c c c - c . cBeaaEaaldAaRR 2CCF edx
runtime. In such implementations, the function names never appear in the binary, making the usage of API text : 0008080148002CD1 - cax, SBD1E99SH
c c c - 0 . s BEEEEEa1ARRR2CD07T BCX
hashing more practical while also obscuring the original APl names. text :@080202140802CD9 15
. rBEEEEEa14888 2CDC BCK
.] . rBeEEEaal4888 2CDE
The name JelusRAT was chosen based on the threat actor’s own naming of the malware, that was found in - text :0000000140002(DE murmurhash2a

some of the samples’ PDB paths.

Figure 12. Hashing function used during dynamic import resolving

TLP:CLEAR

vV / 21

Loader

The loader masquerades as a dummy MFC application with one export 3. Decrypt and load payload in-memory

function called “HelloWorld”, which is executed in the application’s main | | |
subroutine. Andariel has a history of using MFC applications to develop » The loader reads one of its resource entries (encrypted data) which
their loadersi. corresponds to the RAT payload.

The loader contains two encrypted resource sections, one being the RAT * The encrypted data Is decrypted in the same way as the RAT
payload, and another being the RAT’s configuration. configuration, described in the previous part.

Its functionality can be broken down into four main parts: * The decrypted output is a valid PE file, which is loaded in the loader’s

OWN Process memory.
1. Generate decryption key

« Read “key.ini” file from the same directory as the RAT. The file is 4. Self-deletion

immediately deleted after it is read. - As the last step, the loader deletes itself from disk. Although the file

should be locked as it is still a running process, the loader uses similar

* The content, which is base64-encoded, is ran through a custom code as the one outlined here to achieve this.

decryption algorithm. The final output is a string that is used to
decrypt the RAT’s configuration and payload, which are described

_ « This essentially results in the RAT residing fully in memory with no
In the next 2 parts.

traces left on disk.

2. Decrypt and write RAT configuration to disk

 The loader reads one of its resource entries (encrypted data) which
corresponds to the RAT’s configuration.

 The encrypted data is decrypted via AES-256 (CBC mode), with
the AES key being set as the SHA256 value'® of the key generated
from the first part.

 The decrypted configuration data is written to a file called “Info.ini”
on disk.

TLP:CLEAR

vV /

Payload In the samples we have analyzed, this resulted in a configuration list with 7 key/value pairs:

The main payload reads the configuration file (Info.ini) that was written on disk by |P:C2IPaddress. « |V: Likely stands for InterVal. It’s used in the
the loader. The file is deleted immediately after it is read. The configuration data is calculation to determine how much time
XORed with the XOR key being the file content’s first byte. An example of Info.ini SP: C2 port. certain sleep calls need to spend. Its value is
before and after decryption is shown in figure 13. also passed onto the RAT’s loaded plugins,

ST: Likely stands for Sleep Timer, this value
IS also used as a timer, but for other sleep

calls in the code. TP: Transfer protocol (set as tcp). However, it
IS not used anywhere.

which is described later.

OB: Bitness of the payload (32 or 64 bit).
This data is used as value for the “ClientBIT” GP: This value is not used anywhere. The

value in the handshake packet sent to the value was set as “Blackl” across the samples
C2, which is described later. we analyzed.

One of the JelusRAT samples creates and checks for a mutex named “WindowsServer”, terminating itself if the
mutex already exists.

The RAT initializes its C2 communication by sending an initial handshake packet. The handshake packet follows
the same format as the configuration data described earlier, with the first byte being a randomly generated XOR
key. This packet format is used across all of the RAT’s C2 communication. The handshake packet contains a list

of 2 key/value pairs:
1. Main: Handshake string. In the samples we have analyzed, its value is hardcoded as “Happy new year!”

2. ClientBIT: Indicates the RAT’s bitness (32 or 64 bit). Taken from “OB” config value.

For the handshake to succeed, the RAT expects to receive the same handshake string “Happy new year!” as a
response, however inside a “Check” key instead of “Main”.

BEO000O0 B8 B8 81 Ba ba 88 65 68
- | | BE000016 B8 68 48 66 J8 88 78 84
Figure 13. Info.ini (RAT config) before and after decryption 60088828 65 @8 77 66 70 @8 65 BB

BBBBBo 1o

Figure 14. Expected handshake response (decrypted) from C2.

TLP:CLEAR

vV /

The RAT supports commands such as:

o SetCritical: Sets itself as a critical process, i.e. if this
process Is terminated then the Windows machine
will bluescreen. It calls the undocumented NTDLL
function NtSetinformationProcess with class
ProcessBreakOnTermination for this.

 UnSetCritical: Unset itself as critical process.
 Ping: the payload does a heartbeat check with the C2
 Sleep: change “ST” config value

* Interval: change “IV” config value

o Stop: terminate process

In addition to these commands, the RAT can also receive
a plugin (delivered as a DLL) from its C2 server. This
capability makes the RAT fully modular by allowing new
functionality to be loaded and executed on demand. We
assess that these plugins likely provide the core features
of the RAT, as the base implant is otherwise fairly limited
on its own. To load a plugin, the C2 sends a “SavePlugin”
command to the RAT, and to forward a command to a
plugin, the C2 sends a “Plugin” command to the RAT.
Although we were unable to obtain any plugin samples,
each plugin is expected to expose four export functions:

1. testPlugin
2. beginPlugin
3. endPlugin

4. processCommand

TLP:CLEAR

StarshellRAT

StarshellRAT is a custom RAT developed in C# (.NET). This RAT was
discovered in attack #2, where its loader (second variant mentioned
In earlier section “Trojanized supply-chain to deliver new RATs”) and
the RAT itself were hosted on the staging server we found.

Upon execution, it first fingerprints the victim and sends
information to its configured C2, including:

e (OSversion

* Unique victim identifier: MD5 hash of concatenated values for
processor count, username, machine name, OS version, |IPv4
addresses of local machine, and OS drive’s total size.

 An empty string (likely some reserved value such as campaign
identifier, not implemented in observed instances)

e Username
 RAT’s configured sleep time

 |Pv4 address(es) of local machine

These values are all concatenated together with a <==> string before
being sent to the C2.

After fingerprinting is completed, the RAT then waits for incoming
commands, with the following implemented capabilities:

 Execute shell command

e Write file to disk

« EXxfiltrate file from disk to C2
 Take a screenshot

« Sleep for a specified duration

 Terminate itself (exit process)

23

Its C2 communication is implemented via a simple TCP client and
the data is compressed using gzip. The command to be executed is
determined by the first byte of each decompressed packet.

The name “StarshellRAT” was chosen by combining one of the
function names called “StarShell”, which is a typo for “StartShell” and
the malware’s category (RAT).

The RAT’s list of function names are shown in figure 15.

Figure 15. StarshellRAT function names

vV /

GopherRAT

GopherRAT is a custom Golang-based RAT developed with a range of capabilities. This RAT was
discovered through attack #2.

The RAT starts by establishing a TCP connection with its C2 and authenticating through a
custom handshake. The RATs config (C2 address and port) is XORed with a hardcoded 8-byte
key (357095A221F033AC), which is also used to encrypt/decrypt the C2 communication.

The custom handshake involves sending a randomly generated 16-byte value to the C2, with the
last 8 bytes XORed by the hardcoded XOR key and checking the response value received back
from the C2.

Once the handshake is completed, the RAT sends a unique victim identifier to the C2. The victim
identifier is constructed by generating a SHA256 hash of the victim machine’s network adapter
MAC address and concatenating the first 10-bytes of the hash value with the phrase “windows”. If
the MAC address could not be retrieved by the malware, the RAT sends a Korean error message
(translating to “MAC address not found”) to its C2. The error message is shown in figure 16.

Figure 16. Korean error message when MAC address can’t be retrieved

The RAT sets a global variable as “windows” during its initialization. This variable is checked in
parts of the malware code. For instance, in one of the RAT commands (depicted in figure 17), the

RAT supports printing out the current working directory through a readlink operation on “/proc/%d/

cwd” only if the global variable is set as “linux”. In another part related to drive enumeration, the
RAT checks if the variable matches “windows”. This global variable and the “windows” string that
IS concatenated to the victim identifier described earlier suggest a linux variant of this RAT could
exist in the wild.

TLP:CLEAR

Figure 17. RAT command to print current working directory with Linux check

24

vV /

The RAT sets up a thread to do a heartbeat check with its C2 every 20 seconds and on its main thread
awaits to receive commands from its C2.

The commands supported by the RAT include:

1.

oo & W N

(o2

8.

9.

Execute a shell command

. Execute a binary

. Exfiltrate/drop file from/to disk.

. Exfiltrate folder

. Enumerate logical drives (sending drive letter and list of root folders to C2)

. Enumerate files/folders, sending information such as file attributes and child folders.

Set sleep time (in minutes)
SOCKS tunneling

Create directory, delete file or folder, and more...

One of the other noteworthy commands in the RAT is the ability to encode data (such as standard output
for executed commands) to CP949 (Korean language). We suspect this is to support operations on
systems with Korean locale.

The RAT and its C2 communicate their actions and response through the same custom packet structure.

The packet structure is defined as:

Packet struct {

|dentifier uint8;

Length uint32;

Content [Juint8;

}

Some of GopherRAT’s function names have been depicted in figure 18.

TLP:CLEAR

Figure 18. Example of GopherRAT function names

vV /

New tools

Custom .NET port scanner BYOVD - Vulnerable Process Explorer Driver

This is a 32-bit .NET executable that serves as a custom port scanner. Andariel has developed One of the artifacts found on the staging server was a batch file (named bat.gif). The file’'s content
and used custom port scanners in the past!’i. Moreover, the executable was obfuscated with IS shown in figure 20. The batch file installs and runs a driver named “page.sys” as a service. It
“Dotfuscator” — an obfuscator used by Andariel in the past!®. This executable was observed in would subsequently launch another custom executable called “taskhost.exe” with two arguments:
attack #1 as well as on the staging server. “-n” set as TvSvc.exe and “-t” set as File, after which it would unload and remove the system driver

as well as a batch file called “1.bat” (assumed to be the same batch file).
As its arguments, the port scanner can take:

. We were able to recover the page.sys file from the same staging server, which was a vulnerable
* -h(specific hosts or host range) REQUIRED version (16.32) of the Process Explorer driver (procexp). This driver has been abused by threat

 -p (specific ports or port range) REQUIRED actors to kill EDR solutions in the past<.

In this instance, the driver was abused to target “TvSvc.exe” which belongs to TurboVaccine, a

* -c (connection timeout) OPTIONAL South Korean cybersecurity vendor.

e -t (thread count) OPTIONAL

. -f (write to file) OPTIONAL cybersecurity solutions, therefore this may be a new TTP in their arsenal.

There have been no previously reported instances of Andariel using BYOVD technique to target

An example of its usage has been shown in figure 19.

Figure 20. Contents of the batch file

Figure 19. Output from port scanner usage example

TLP:CLEAR

vV /

PetitPotato

This is a customized version of PetitPotato?!, an open-source privilege escalation tool abusing
MS-EFSR protocol.

The tool was found on the staging server, and it has been customized in several ways:
1. It shows its usage through “helpme” command.

2. Torun successfully it expects 3 arguments, the first being the Efsld, the second being the
command to be executed, and lastly “helpme” string needs to be provided.

3. It prints out “welcome” when it doesn’t receive the appropriate number of arguments.

4. The default named pipe has been renamed to “\\.\pipe\OSV\pipe\srvsvc” and its pipe file
name has been changed to “\\localhost/pipe/OSV/C$\access.log”. The changed portions
have been emboldened.

The threat actor employed obfuscated stackstrings in the same way as the JelusRAT samples
described in an earlier section called “JelusRAT”. Lastly, the help command revealed that the
original file name was “me.exe”. An example of “helpme” command output is shown in figure 21.

Figure 21. Example of command output for helpme

27

vV /

28

Othertools

The group leverages several other tools that were found in attack #1 and/or staging server. These have been summarized in the table below.

Sighting

A custom compiled executable for

This proxy tool has been used by Andariel
Socks5Server?? proxy

in the past?®. Staging server

PuTTY link (plink) executable Plink has been used by Andariel in the past?*2°>2° Staging server

This privilege escalation tool was packed by a
Packed PrintSpoofer?” executable custom packer linked to Andariel (tracked as

UnderCrypt). PrintSpoofer has been used by Sl SEEr
Andariel in the past=®.

Procdump This tool has been used by the group in the

Staging server and attack #1
past?®3° for credential theft.

(same exact hash)

Passview This tool has been used by the group in the

Staging server and attack #1
past3! for credential theft.

(same exact hash)

TLP:CLEAR

vV /

Conclusion

In this report we detailed two cyberattacks we discovered in 2025 that we attributed to the Andariel
group. We also provided analysis on some of the new malware and tools found in these attacks, as
well as inside a staging server that we attributed to Andariel at the time.

Although the latest malware, tools, and techniques we discovered shape a part of Andariel’s current
arsenal, the group still relies heavily also on their old malware, packers, tools, and techniques that
provide tracking and attribution opportunities.

While Andariel’s activity has historically been concentrated in South Korea, we continue to observe
the group conducting operations worldwide, as illustrated by the first attack described. Their targeting
and objectives have varied over time, some campaigns have pursued financial gain, while others
have focused on stealing information aligned with the regime’s priority intelligence needs. This
variability underscores the group’s flexibility and its ability to support broader strategic goals as those
priorities change over time.

Acknowledgements

The author of this report wishes to acknowledge the contributions made by his colleagues towards
this research, namely Bert Steppe and Neeraj Singh.

TLP:CLEAR

29

Indicators of Compromise (10Cs) YARA rules

A full list of Indicators of Compromise (IOCs) can be found in WithSecure’s GitHub YARA rules can be found in WithSecure’s GitHub
[https://github.com/WithSecureLabs/iocs/tree/master/Andariel2025/]. [https://github.com/WithSecurelLabs/iocs/tree/master/Andariel2025/].

L https://www.microsoft.com/en-us/security/blog/2024/07/25/onyx-sleet-uses-array-of-malware-to-gather-intelligence-for-north-korea/#:~:text=t0%200nyx%20Sleet.-, TigerRAT,-Since %202020%2C % 200nyXx
2 https://www.microsoft.com/en-us/security/blog/2023/10/18/multiple-north-korean-threat-actors-exploiting-the-teamcity-cve-2023-42793-vulnerability/#:~:text=000752074544950ae9020a35ccd77de277f1cd5026b4b9559279dc3b86965eee
3 https://asec.ahnlab.com/ko/73907/

“ https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#.~:text=the % 20actors % 20prefer% 20netstat%20commands

® https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=credentials%20%5BT1003%5D.-,Discovery,-The% 20actors % 20used

® https://blog.talosintelligence.com/lazarus_new_rats_dlang_and_telegram/#:~:text=Get%20RDP%20session%20reconnection%20information

" https://asec.ahnlab.com/wp-content/uploads/2021/11/Lazarus-%EA%B7%B8%EB%A3%B9%EC % 9D %98-NukeSped-%EC%95%85% EC%84%B1%EC%BD %94 %EB%93%9C-%EB%B6%84%EC%84%9D-%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf
8 https://securelist.com/lazarus-andariel-mistakes-and-easyrat/110119/

° https://blog.talosintelligence.com/lazarus-three-rats/

10 https://labs.withsecure.com/publications/no-pineapple-dprk-targeting-of-medical-research-and-technology-sector

11 https://asec.ahnlab.com/en/74835

12 https://asec.ahnlab.com/ko/73907/

13 https://github.com/aappleby/smhasher/blob/master/src/MurmurHash2.cpp#L194

1% https://blog.talosintelligence.com/lazarus-collectionrat/#:~:text=The implant consists,actual malicious code

15 https://gchqg.github.io/CyberChef/#recipe=SHA2(‘256’,64,160)&input=VmM5dJEIVbIITXjJWwYUpTNFNCZGdkdk9YRWFdMnIWMWg

18 https://github.com/LloydLabs/delete-self-poc

17 https://asec.ahnlab.com/wp-content/uploads/2021/11/Lazarus-%EA%B7%B8%EB%A3%B9%EC%9D %98-NukeSped-%EC%95%85%EC%84%B1%EC%BD %94%EB%93%9C-%EB%B6%84%EC%84%9D%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf
18 https://blog.talosintelligence.com/lazarus-magicrat/#:~:text=Lightweight port scanner

19 https://asec.ahnlab.com/en/63192/

20 https://news.sophos.com/en-us/2023/04/19/aukill-edr-killer-malware-abuses-process-explorer-driver/

21 https://github.com/whOamitz/PetitPotato/tree/master/PetitPotato

22 https://github.com/earthquake/Socks5Server/tree/master/Socks5Server

23 https://asec.ahnlab.com/en/73924/#:~:text=though%200open%2Dsource-,Socks5%20proxy,-tools % 20have %20also

24 https://www.security.com/threat-intelligence/stonefly-north-korea-extortion#:~:text=available % 20SSH%20client.-,Plink,-% 3A%20A % C2%A0command

2% https://blog.talosintelligence.com/lazarus-three-rats/#:.~:text=tools % 20such%20as-,PuTTY %27s%20plink,-.

26 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#:~:text=such%20as%203Proxy%2C-,PLINK,-%2C%20and%20Stunnel%20as

27 https://github.com/itm4n/PrintSpoofer

28 https://asec.ahnlab.com/en/59073/#:~:text=MS%2DSQL%20Server%2C-,PrintSpoofer,-was%20used % 20for

29 https://asec.ahnlab.com/en/74039/#:~:text=installed % 20Mimikatz%20and-,ProcDump,-during % 20the % 20infiltration

30 https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-207a#.~:text=PLINK%20%5BT1572%5D-,ProcDump,-%5BT1003%5D

31 https://asec.ahnlab.com/en/74039/#:~:text=information%20from%20NirSoft% E2%80%99s-,WebBrowserPassView,-and % 20web % 20browser

TLP:CLEAR

vV /

TLP:CLEAR

31

