
WithSecure™ Intelligence Research, April 2024

by Mohammad Kazem Hassan Nejad

KAPEKA
A novel backdoor
spotted in Eastern
Europe

2

Contents
Executive summary �� 3

Background ��� 4

Dropper analysis �� 6

Backdoor analysis �� 9

Backdoor configuration ��� 10

Initial fingerprinting �� 13

Network communication ��� 14

Update C2 configuration ��� 17

Backdoor tasks ��� 17

Uninstall backdoor �� 20

Read file from disk �� 22

Write file to disk ��� 22

Launch process or payload �� 23

Execute shell command �� 25

Upgrade backdoor ��� 25

Sandworm attribution analysis �� 30

Conclusion �� 35

Appendices ��� 36

Scripts ��� 37

Detection opportunities ��� 38

WithSecure Elements �� 38

YARA rules �� 38

Indicators of compromise (IOCs) ��� 38

3

Executive summary

• WithSecure has uncovered a novel backdoor that has been used in
attacks against victims in Eastern Europe since at least mid-2022�

• The malware, which we are calling “Kapeka”, is a flexible backdoor with
all the necessary functionalities to serve as an early-stage toolkit for its
operators, and also to provide long-term access to the victim estate�

• The malware’s victimology, infrequent sightings, and level of stealth
and sophistication indicate APT-level activity�

• WithSecure discovered overlaps between Kapeka, GreyEnergy, and
Prestige ransomware attacks which are all reportedly linked to a group
known as Sandworm� WithSecure assesses it is likely that Kapeka is a
new addition to Sandworm’s arsenal. Sandworm is a prolific Russian
nation-state threat group operated by the Main Directorate of the
General Staff of the Armed Forces of the Russian Federation (GRU).
Sandworm is particularly notorious for its destructive attacks against
Ukraine in pursuit of Russian interests in the region.

• Kapeka contains a dropper that will drop and launch a backdoor on a
victim’s machine and then remove itself. The backdoor will first collect
information and fingerprint both the machine and user before sending
the details on to the threat actor� This allows tasks to be passed back to
the machine or the backdoor’s configuration to be updated. WithSecure
do not have insight as to how the Kapeka backdoor is propagated by
Sandworm�

• Kapeka’s development and deployment likely follow the ongoing
Russia-Ukraine conflict, with Kapeka being likely used in targeted
attacks of firms across Central and Eastern Europe since the illegal
invasion of Ukraine in 2022.

• It is likely that Kapeka was used in intrusions that led to the deployment
of Prestige ransomware in late 2022.

• It is probable that Kapeka is a successor to GreyEnergy, which itself
was likely a replacement for BlackEnergy in Sandworm’s arsenal.

4

Background

In mid-2023 WithSecure found several artifacts observed in an
intrusion set likely linked to Russian APT activity. One of these
artifacts was an unknown backdoor/dropper detected in an
Estonian logistics company in late 2022�

Upon analysis, we found two additional versions of the
dropped backdoor submitted to VirusTotal from Ukraine in
mid-2022 and mid-2023, one of which was packaged with a
scheduled task file from an infected machine that launched
the backdoor. We assessed with moderate confidence that the
submitters were victims�

Based on these sparse data points, several preliminary
assessments were made:

• No previous variants of the backdoor have been observed or
publicly reported�

• The backdoor was rarely sighted, hence indicating that it has
been used in limited scope attacks since at least mid-2022�

• Based upon victimology, the backdoor was likely used in
campaigns specifically targeting victims in Eastern Europe.

Based on the rarity of the backdoor, its characteristics, and
sightings in Eastern Europe, we made an initial assessment
with low confidence that the backdoor, which we have dubbed
“Kapeka” (‘little stork’ in Russian), is likely a bespoke tool
used by an advanced persistent actor (APT) possibly of
Russian origin in targeted attacks in Eastern Europe� This
was later corroborated by Microsoft, who detect this malware
as KnuckleTouch , and attribute it to Seashell Blizzard (better
known as Sandworm). This is in-line with historical and
current (including post 2022 Russian invasion of Ukraine)
targeting and activities linked to Sandworm group, who are
known to support the wider strategic objectives and changing
intelligence requirements of the Russian state.

While examining the possible link between the backdoor and
the Sandworm group, WithSecure noted overlaps between
Kapeka and GreyEnergy, a toolkit thought to be associated
with the Sandworm group� Additionally, we discovered
connections between Kapeka, GreyEnergy, and Prestige
ransomware attacks that occurred in late 2022�

1 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha

5

This report provides an in-depth
technical analysis of the backdoor and its
capabilities, and analyzes the connection
between Kapeka and Sandworm
group. The purpose of this report is to
raise awareness amongst businesses,
governments, and the broader security
community� WithSecure has engaged
governments and select customers
with advanced copies of this report. In
addition to the report, we are releasing
several artifacts developed as a result of
our research, including a registry-based
& hardcoded configuration extractor,
a script to decrypt and emulate the
backdoor’s network communication, and
as might be expected, a list of indicators
of compromise, YARA rules, and MITRE
ATT&CK mapping�

Figure 1. Overview of Kapeka

6

Dropper analysis

The Kapeka dropper is a 32-bit Windows executable responsible for
dropping, executing, and setting up persistence for the backdoor on a
victim’s machine as well as removing itself from disk. The backdoor binary,
which is embedded within its resource section, is encrypted via AES-256�
The dropper’s resource section contains both 32-bit and 64-bit version of
the backdoor and chooses the appropriate version depending on the victim
machine’s processor� The dropper utilizes an embedded key to decrypt the
binary. However, if the embedded key is not set, then it defaults to using the
command line string as the key for decryption. Figure 2 shows code snippet
used to extract and decrypt the appropriate backdoor binary from the
dropper’s resource section�

Depending on the process privileges, the decrypted backdoor binary is
dropped as a hidden file under a folder called Microsoft in either CSIDL_
COMMON_APPDATA (if admin or SYSTEM) or CSIDL_LOCAL_APPDATA
(if not). Note: CSIDL_COMMON_APPDATA is typically “C:\ProgramData”
and CSIDL_LOCAL_APPDATA is typically “C:\Users\<username>\
AppData\Local”. The file name is 5-6 characters long and is randomly
generated from consonants and vowels (to make it appear like a legitimate
word) followed by a “.wll” extension. It is worth noting that the dropper looks
for SensApi.dll (a legitimate Windows DLL) under system directory and
modifies the file time attributes of the dropped backdoor binary to match the
legitimate DLL by using SetFileTime().

Figure 2. Code snippet to decrypt backdoor file from dropper’s resource section

7

The dropper will then launch the backdoor binary by calling rundll32 and passing
the backdoor’s first export ordinal (#1) with a “-d” argument. Figure 3 shows an
example of the command line used to launch the backdoor.

Figure 3. Example of dropper launching the backdoor

Figure 4. Code snippet to add persistence

Depending on the process privileges, the dropper then sets persistence for the
backdoor either as a scheduled task (if admin or SYSTEM) or autorun registry
(if not). For the scheduled task, it creates a scheduled task called “Sens Api” via
schtasks command, which is set to run upon system startup as SYSTEM� To
establish persistence through the autorun utility, it adds an autorun entry called
“Sens Api” under HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
via the ‘reg add’ command. Both persistence mechanisms are set to launch the
binary by calling rundll32 and passing the backdoor’s first export ordinal (#1)
without any additional argument. Figure 4 shows code snippet used to create the
appropriate persistence mechanism�

8

Figure 5. Kapeka execution command from scheduled task seen in-the-wild called “OneDrive” versus “Sens Api” created by the dropper

Figure 6. File content of dropped batch script

WithSecure identified a Kapeka scheduled task file in-the-
wild from an infected machine. The scheduled task was
called “OneDrive” instead of “Sens Api” that is created by
the dropper binaries analyzed. Furthermore, the backdoor
name (wslsrv) in this instance did not follow the same name
generation method (using consonants and vowels) found
in the dropper binaries analyzed and the command line to
launch was slightly different. Figure 5 shows the execution
command line seen in this instance versus an example from
a scheduled task created by the dropper�

Lastly, the dropper will drop a hidden batch file into CSIDL_
LOCAL_APPDATA and launch it, which will delete the
dropper from disk. The file name is 3-4 characters long and is
generated with the same name generation algorithm used for
the backdoor. If the user is an administrator, the batch file will
be set to be removed upon reboot by calling MoveFileExW()
and setting dwFlags as MOVEFILE_DELAY_UNTIL_
REBOOT and lpNewFileName as NULL. Figure 6 shows the
file content of the dropped batch file.

9

Backdoor analysis

The Kapeka backdoor is a Windows DLL containing one
function which has been exported by ordinal (rather than by
name). The backdoor is written in C++ and compiled (linker
14.16) using Visual Studio 2017 (15.9). The backdoor file
masquerades as a Microsoft Word Add-In with its extension
(.wll), but in reality it is a DLL file.

The backdoor is meant to be executed with “-d” argument
for its initial run, but without it for subsequent runs (which is
achieved via the persistence method mentioned in earlier
section “Dropper analysis”). The purpose of this flag is
explained in subsequent sections.

Like many other backdoors, the backdoor implementation is
multi-threaded, utilizing event objects for data synchronization
and signaling across threads�

In total, the backdoor launches four main threads:

• First thread: This is the primary thread which performs the
initialization and exit routine, as well as C2 polling to receive
tasks or an updated C2 configuration.

• Second thread: Monitors for Windows log off events,
signaling the primary thread to perform the backdoor’s
graceful exit routine upon log off.

• Third thread: Monitors for incoming tasks to be processed.
This thread launches subsequent threads to execute each
received task�

• Fourth thread: Monitors for completion of tasks to send back
the processed task results to the C2�

2 https://learn.microsoft.com/en-us/cpp/build/exporting-functions-from-a-dll-by-ordinal-rather-than-by-name
3 https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects

 https://learn.microsoft.com/en-us/cpp/build/exporting-functions-from-a-dll-by-ordinal-rather-than-by-name https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects
 https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects

10

In terms of data handling, the backdoor utilizes a large principal structure to
hold all its subsequent data objects and structures, including thread/mutex/
object handles. Furthermore, the backdoor utilizes JSON (implemented using
‘rapidjson’ library) to hold its data (such as C2 configuration and tasks received)
internally as well as to send and receive information from its command-and-
control server. In total there are 36 unique JSON keys which span over several
JSON structures, which have been detailed in later sections. Each JSON key
is obfuscated and 6-characters long. The obfuscated field names have not
changed between the samples we have analyzed. Figure 7 shows examples of
obfuscated JSON field names seen in the backdoor.

For encryption and encoding, the backdoor utilizes three separate methods
throughout its execution, namely: AES-256 (CBC mode), XOR, and RSA-2048,
with the RSA public key changing between samples�

Backdoor configuration

The backdoor contains an embedded C2 configuration that is encrypted via
AES-256. The configuration consists of a 32-byte key followed by an 8-byte
padding and the encrypted configuration data. The configuration is decrypted
during the backdoor’s initialization phase� The backdoor also reads any
existing configuration that’s persisted in registry during its initialization phase.
Depending on whether the backdoor is launched with the ‘-d’ argument and
existing configuration in registry, the backdoor chooses which configuration
to use. If ‘-d’ argument (which indicates first run) is provided, the backdoor will
favor its embedded configuration, otherwise it will read existing configuration
from registry, falling back to the embedded configuration if unavailable. Figure 6. File content of dropped batch script

11

The backdoor persists its configuration via a registry
value called “Seed” in “HKU\<SID>\Software\Microsoft\
Cryptography\Providers\<GUID>\”. To generate the
GUID value, the malware calls GetCurrentHwProfileW()
and fetches the szHwProfileGuid field. In earlier versions
of the backdoor, the malware would simply use the
fetched value as GUID, however in the latest version of
the backdoor we have analyzed the malware contains
a custom algorithm implementing CRC32 and PRNG
(pseudo-random number generator) operations applied to
the GUID and a hardcoded value in the binary (described
in a later section as “LSmL1j”) to generate a unique GUID.
In all versions of the backdoor, the backdoor will default
to a hardcoded GUID value (“0CA1BE92-FB73-BB74-
5E41-00FDE76B2E8D”) if GetCurrentHwProfileW()
fails. The backdoor uses the same algorithm to generate
its mutex as “Global\BFE_Notify_Event_<GUID>”, but
the fallback value is “{ad584834 - f1b9 - 1587 - 637b -
1e0025582179}” instead�

The persisted configuration is encrypted via AES-256 with a key consisting of 32-bytes
of MachineGuid (UTF-16) value from HKLM\SOFTWARE\Microsoft\Cryptography, falling
back to a hardcoded 32-byte key “Azbi3l1xIgcRzTsOHopgrwUdJUMWpOFt” if the registry
key query fails. An example has been shown in figure 8.

Figure 8. Example of encrypted configuration persisted in registry value “Seed”

12

Both the embedded and persisted configuration are encoded in JSON format. The C2 configuration JSON structure has been
described in figure 9. An example of the C2 configuration is shown in figure 10.

JSON Key Value type Value

GafpPS Nested object Holds the C2 configuration components mentioned below.

LsHsAO Array C2 Server URLs (required). This is the only mandatory field for the backdoor’s
embedded configuration.

hM4cDc Integer C2 polling interval (minutes) – The actual polling interval is randomized each time
between the specified amount and next minute. If not present, the default amount is
10 minutes�

nLMNzt Integer Maximum alive time (days) – The maximum number of days the backdoor will
try connecting to the C2 since its initialization or last successful C2 poll before
uninstalling itself. If not present, the default amount is 3 days.

rggw8m Nested object Holds the system time structure objects mentioned below� The values are generated
& updated at runtime by the backdoor using GetSystemTimeAsFileTime(). This
essentially keeps track of the backdoor’s alive time and last successful C2 poll. This is
included in the persisted configuration in registry.

bhpaLg Integer System time (Low-order part)

sEXtXs Integer System time (High-order part)

Figure 9. C2 configuration JSON structure

Figure 10. Example of C2 configuration

4 https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime

https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime

13

Initial fingerprinting

During its initialization phase, the backdoor collects information about
the victim’s machine and user through a set of WinAPI calls and registry
queries. This information is stored internally within a defined structure,
which is later converted into a JSON format. The backdoor forwards this
JSON blob in its first and subsequent communication with the threat actor’s
command-and-control server�

Figure 12 shows a complete list of information gathered from the victim’s
machine, collection method, and JSON key mapping. An example of JSON
holding fingerprinted information is shown in figure 11.

JSON Key Value type Value

KBXZSb Username GetUserNameW()

Overwritten by NetUserGetInfo() -> USER_INFO_1. usri1_name

Cwiq4j User privileges NetUserGetInfo() -> USER_INFO_1.usri1_priv

KKGCUr Token elevation type GetTokenInformation() -> TokenElevationType

arqSO1 Computer name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_computername

pHsy0J Domain name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_langroup

ozYekP OS Major Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_major

8ORGRb OS Minor Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_minor

b0HqGu ProductName HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName

xsRMVc Processor Architecture GetNativeSystemInfo() -> SYSTEM_INFO. wProcessorArchitecture

q200c6 CSDVersion HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CSDVersion

RAJ5MJ ProductId HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductId

7N4QJp RegisteredOwner HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\RegisteredOwner

tczMsk RegisteredOrganization HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\RegisteredOrganization

GQKkuo UnknownFlag GetVersionExW(&OSVERSIONINFOEXW)

This flag is set as 1 if the API call is successful. The exact reason is unknown, but it is likely an OS check.

Wqk8xK Windows Server 2003 R2

Build Number

GetSystemMetrics(89) -> SM_SERVERR2

This can serve as a check whether the OS is Windows Server 2003 R2.

eEM2N9 System Locale - Language GetLocaleInfoW() -> LOCALE_SISO3166CTRYNAME

NPvllV System Locale - Country GetLocaleInfoW() -> LOCALE_SISO639LANGNAME
Figure 11. Example
of JSON holding
collected information

Figure 12. Information collected, method, and JSON mapping.

14

Network communication

The backdoor uses WinHttp 5.1 COM interface (winhttpcom.
dll) to implement its network communication component.
The backdoor communicates with its C2 to poll for tasks and
to send back fingerprinted information and task results. The
backdoor utilizes JSON to send and receive information from
its C2�

Two separate threads are responsible for network
communication, one to send fingerprinted information and poll
for tasks, and another to send completed tasks results back to
the C2. Both threads implement the same request/response
handler. The request JSON structure has been described in
figure 13. An example of C2 request JSON is shown figure 14.

JSON Key Value type Value

jxs2HZ Integer Integer value distinguishing between the C2 poller (value 0) and response handler
(value 1) thread.

LSmL1j String 16-byte hexadecimal string that’s hardcoded inside the binary. The exact purpose of
this string is unknown. However, it is most likely a form of campaign/build identifier.
For instance, to distinguish between private RSA keys to use for decryption.

SIsKba Nested object This holds the fingerprinted information that has been mentioned in section “Initial
fingerprinting”.

jRcZrx Nested object This holds the output for each of the executed backdoor tasks. This is only populated
when task results are available to be sent to the C2. This structure is described further
in section “Backdoor tasks”�

Figure 13. C2 request JSON structure Figure 14. Example of C2 request JSON

15

The backdoor uses a custom structure to format the data (figure 13) it sends to its C2. Figure 15 shows an annotated example of the C2 request structure.

The custom structure is generated via the following steps:

• Generate a random 32-byte AES key that’s used to encrypt the JSON data to be sent.

• Encrypt the JSON data using the randomly generated AES key.

• Store encrypted data size formatted using htonl()

• Encrypt the 32-byte AES key with the RSA-2048 public key that’s embedded in the binary�

• Store encrypted key size formatted using htonl()

• Generate an arbitrary amount of random data.

• Arrange the data as:
<SIZEOFENCRYPTEDKEY><ENCRYPTEDKEY><SIZEOFENCRYPTEDJSONDATA><ENCRYPTEDJSONDATA><APPENDEDRANDOMDATA>

• Generate a 4-byte XOR key.

• XOR the data structure using the generated XOR key.

• Prepend the XOR key to the data structure.

• Send the final data structure to the C2.

16

Figure 15. Example of annotated C2 request structure

17

The backdoor will re-use the same randomly generated
32-byte AES key to decrypt the response it receives� The
backdoor can receive two types of responses, one to update
its configuration and another to execute tasks, both of which
have been described in later sections�

Moreover, the backdoor checks for internet proxy settings
using WinHttpGetIEProxyConfigForCurrentUser() during its
initialization phase and C2 polling. If a proxy setting exists,
the backdoor will use the specified proxy server for its C2
communication. This functionality was only observed in the
latest version of the backdoor analyzed.

Lastly, while the backdoor makes use of WinHttp 5.1 COM
interface, we identified unused code snippets implementing
XML HTTP 6.0 COM interface. Figure 16 shows a list of COM
interfaces implemented by the backdoor, including XML HTTP
6�0 as well as WinHttp 5�1� Figure 16. COM interfaces implemented in backdoor, highlighting WinHttp 5.1 COM interface.

Update C2 configuration

The backdoor can update its C2 configuration by receiving a
new configuration as a JSON response (with key “GafpPS”)
from its command-and-control server during polling. If the
received configuration differs from the existing configuration,
the backdoor will update its configuration on-the-fly as well
as persist the latest C2 configuration by updating the registry
value (“Seed”) that holds its configuration.

Backdoor tasks

The backdoor can execute tasks on the victim’s machine
by receiving a list of tasks as a JSON response (with key
“Td7opP”) from its command-and-control server during
polling, spawning a separate thread to execute each task�

18

JSON Key Value type Value

Td7opP Array This holds a list of backdoor tasks to be executed on the victim’s machine.
Each task holds the key/value pairs mentioned below.

CwbJ4E Integer Command ID to execute (zero-based number). See figure 19 for full list of
supported command IDs�

XVXLNm String First argument
Used mainly for file name/command line to read, write, launch.

INlB5x Nested
object

Second argument
Used for payload purposes, such as upgrading backdoor or writing a file
to disk. This holds a key/value pair with the key being the filename and the
value being the file content that’s base64-encoded.

J8yWIG String Identifier string that can be passed to distinguish between executed
commands, this is logged in the output sent back to the command-and-
control as “3qY9vY”.

Figure 17. C2 response JSON structure Figure 18. Example of C2 response JSON with received tasks

Figure 17 shows the C2 response JSON structure that houses the tasks and data associated to each task.
An example of C2 response JSON with received tasks is shown in figure 18.

19

The backdoor supports all basic functionalities that allow it to operate as a flexible backdoor in
the victim’s estate. Figure 19 shows the list of commands supported by the backdoor.

Once the tasks are completed, the results are sent back to the command-and-control server in
JSON format (under key “jRcZrx”). Figure 20 shows the JSON structure that houses the task
results sent back to the command-and-control server. An example of C2 response containing
task results is shown in figure 21.

Command ID Command Required parameters

0 NotImplemented -

1 Uninstall backdoor -

2 Read file from disk XVXLNm – File path to read

3 Write to file on disk XVXLNm – File path to write
INlB5x – File content to write

4 Launch process or
payload

XVXLNm – Command line to process & launch

INlB5x (optional) – Custom payload

5 Execute shell
command

XVXLNm – Shell command to launch

6 Upgrade backdoor -

Other Return “unknown\n” -

JSON Key Value type Value

jRcZrx Array This holds a list of results for executed tasks. Each
result holds the key/value pairs mentioned below.

3qY9vY String Identifier string that was passed in the command input
as “J8yWIG”

36d6Mo String Logged message during task execution

RzYnkr Nested object This holds a key/value pair that’s used during read file
task, with the key being the filename and the value being
the file content that’s base64-encoded.

Figure 19. Supported commands

Figure 20. Completed task results JSON structure

20

Figure 21. Example of C2 response containing task results

Figure 22. Example of C2 response to uninstall the backdoor

Uninstall backdoor

This functionality removes all backdoor artifacts from the
victim’s machine by launching several shell commands
combined via ampersands through the functionality “Launch
process or payload” mentioned in a later section. Figure 22
shows an example of C2 response to uninstall the backdoor.

21

The set of commands include:

• Sleeping for 10 seconds via ping command, allowing
adequate time for the process to terminate before file
deletion�

• Deleting persistence set by the dropper by issuing
‘schtasks delete’ or ‘reg delete’ command depending
on process elevation� All analyzed backdoor samples
deleted the same scheduled task/registry value called
“Sens Api”�

• Deleting the backdoor executable via erase command
with /f /q and /a:h flags.

The task thread will then set the main event object that’s
used for synchronization across the process to a signaled
state, which causes the backdoor to run its graceful exit
routine. However, before doing so it sets a global flag
that causes the exit routine to delete the registry key that
persists the backdoor’s configuration on the victim’s
machine. Figure 23 shows the usage of SHDeleteKeyW()
by Kapeka to delete its persisted configuration.

Figure 23. Kapeka removing its persisted configuration

22

Read file from disk

This functionality reads any file that’s below 50 MB from disk and sends the output
back to the C2, essentially enabling data collection from the victim’s machine. The
file to be read is specified under the first argument (“XVXLNm”). Figure 24 shows
an example of C2 response to read a file from the victim’s machine.

Figure 24. Example of C2 response to read from file

Figure 25. Example of C2 response to write to file
If the operation succeeds, it logs a success message “<filename> OK\n” and
sends back the file content as key/value pair underneath a key called “RzYnkr”,
with the key being the filename, and value being the base64-encoded file content.

In case of an error, the error message is fetched via GetLastError() and logged in an error message
“ERROR <LastError>”. If the file size is above 50 MB, the file size is logged in an error message as
“ERROR: File too large. [<size> > 50 MB]”.

Write file to disk

This functionality writes any file content passed (under the second argument, “INlB5x”) into the desired file
path (under the first argument, “XVXLNm”) on the victim’s machine. Figure 25 shows an example of C2
response to write a file onto the victim’s machine.

23

The threat actor can pass “-f” parameter alongside the file path
in the first argument to forcefully create the respective file path,
for instance, if the file directory does not already exist.

If the file path does already exist, the malware negates the
READ_ONLY file attribute of the file before writing the file
content to ensure a successful file operation. If the file write
operation is successful, then a success message is logged as
“<filename> OK \n” otherwise an error message is logged as
“<filename> FAIL\n”. If the passed content is empty, then an
error message “<filename> EMPTY\n” is returned.

Launch process or payload

This functionality launches a new process as a specified
command line (under the first argument, “XVXLNm”),
essentially allowing any arbitrary executable on disk to be
executed. The first argument is parsed as command line
arguments (white-space delimited tokens) to extract the
executable file to be launched and any arguments passed.

Additionally, the first argument can contain multiple additional parameters that alters the backdoor’s behavior, namely:

• Waiting for the child process in 100 millisecond intervals. This is specified via “-w” argument and it can take a parameter to
specify the number of minutes to wait. For instance, “-w=1” would cause the backdoor process to wait for 1 minute, unless the
launched child process exits sooner�

• Log output and error messages from launched child process (and all its subsequent subprocesses). This is specified via “-o”
argument� To achieve this, the standard input, error, and output are redirected via anonymous pipes�

• File path to write custom payload into. This is specified via “-f” and its functionality is explained further below.

• An unused parameter “-bc”. The functionality of this parameter is unknown.

These additional parameters are not passed into the child process command line that’s launched. Figure 26 shows an example of
C2 response to launch a process�

Figure 26. Example of C2 response to launch process

24

This functionality also supports execution of custom payloads. To do so, the payload must be
passed through the second argument (“INlB5x“).

The backdoor will write the payload to disk before execution and there are two ways the
backdoor will determine the file path to write the payload into:

• If “-f” parameter was specified in the first argument, it will parse the specified file path
passed (white-delimited parameter following -f).

• If “-f” parameter was not specified and/or file path was not provided, then it will generate a
temporary file name with a “00” prefix (via GetTempFileNameW()) under temporary folder
(via GetTempPathW()).

This functionality essentially makes the backdoor modular by allowing additional modules to
be dropped and executed. Figure 27 shows an example of C2 response to launch a custom
payload on the victim’s machine�

This functionality also supports execution of custom payloads. To do so, the payload must be
passed through the second argument (“INlB5x“).

The backdoor will write the payload to disk before execution and there are two ways the
backdoor will determine the file path to write the payload into:

• If “-f” parameter was specified in the first argument, it will parse the specified file path passed
(white-delimited parameter following -f).

• If “-f” parameter was not specified and/or file path was not provided, then it will generate a
temporary file name with a “00” prefix (via GetTempFileNameW()) under temporary folder (via
GetTempPathW()).

This functionality essentially makes the backdoor modular by allowing additional modules to be
dropped and executed. Figure 27 shows an example of C2 response to launch a custom payload
on the victim’s machine�

To launch the process, the backdoor will combine the specified executable file and list of
arguments into a string and call CreateProcessW() passing the string as a command line. If the
process was launched successfully, then a success message is logged as “PID : <PID>\n”. If the
wait flag was set, the backdoor will wait for the specified amount of time or until the child process
exits. If the output flag was set, it will log the output/error received from the child process(es) as
“----------------\n<OUTPUT/ERROR>”.

If the time out is reached and the child process is still running, it will forcefully terminate the child
process and all its subsequent child processes and log “\n----------------\nTerminateProcess\n”,
otherwise if the child process had already exited, it will log the exit code as “\n----------------\
nExitCode : <exitcode>\n”.

Figure 27. Example of C2 response to launch custom payload

25

Additionally, there are five error messages that the backdoor will log
within this functionality, namely:

• If the payload can’t be written to disk, it will log “1: <filename> <LastError>\n”

• If the standard output pipe can’t be created, it will log “2: 0“

• If the standard input pipe can’t be created, it will log “3: 0“

• If the standard error pipe can’t be created, it will log “4: 0“

• If process creation fails, it will log “5: 0“.

Execute shell command

This functionality executes any shell command specified under the first
argument (“XVXLNm”) by using the functionality “Launch process or payload”
mentioned in an earlier section and passing “-w” and “-o” parameters to wait
and log the received process output. Figure 28 shows an example of C2
response to execute a shell command on the victim’s machine�

Upgrade backdoor

This functionality allows the backdoor to upgrade itself by passing a newer
version under the second argument (“INlB5x”). Figure 29 shows an example of
C2 response to upgrade the backdoor�

Figure 28. Example of C2 response to execute shell command

Figure 29. Example of C2 response to upgrade backdoor

26

The backdoor will rename the existing backdoor binary by adding
“.old” extension using MoveFileExW() function. It will drop the new
backdoor binary on disk using the existing backdoor’s file path. It
will then re-use the file attributes and file time attributes of the old
backdoor on the newly created backdoor binary�

It will then launch the new backdoor binary in the same fashion
as the dropper would, that is by calling rundll32 and passing the
backdoor’s first export ordinal (#1) with a “-d” argument, essentially
launching the upgraded binary with the initial run flag.

If the backdoor binary is launched successfully, it will log a success
message “PID : <NewProcessId>\n”.

Otherwise, there are three error messages that the backdoor
can log, namely:

• If the second argument is empty (i.e. no file content passed), it will
log “1\n”.

• If the old backdoor binary could not be moved, it will log “2:
<LastError>\n”

• If the new binary could not be created, it will log “3: <LastError>\n”

The task thread will then set the main event object that’s used for
synchronization across the process to a signaled state in a similar
fashion explained under section “Uninstall backdoor”.

It is worth noting that this functionality was only observed in the latest
version of the analyzed backdoor. This version also spawns a thread
upon launch to delete the old version of the backdoor (with the .old
extension), given that “-d” argument was passed into it (which is
typically the case during the backdoor’s first execution). To achieve
this, the backdoor tries several methods, firstly removing the file’s
READ_ONLY attribute (if this attribute exists). It then attempts to
delete the file using DeleteFileW and if that fails, it retries 45 more
times within a loop that contains a 1 second sleep between retries�
As a final resort, the file will be set to be removed upon reboot by
calling MoveFileExW()and setting dwFlags as MOVEFILE_DELAY_
UNTIL_REBOOT and lpNewFileName as NULL, a method seen
in the Kapeka dropper as well (described in section “Dropper
analysis”). Figure 30 shows code snippet of file deletion method used
by the backdoor to remove older version of itself.

27

This functionality could potentially allow the threat actor to
first infect victims with a skeleton version of the backdoor
in order to fingerprint them and only drop a more complete
version of the backdoor if the victim is deemed an
appropriate target�

Figure 30. Code snippet used to remove old backdoor

28

Other behavior

The dropper and the backdoor implement stackstrings to obfuscate some of the strings used in the malware.
Figure 31 shows examples of stackstrings seen in the backdoor.

Figure 31. Stackstrings in the backdoor

5 https://learn.microsoft.com/en-us/windows/win32/shutdown/logging-off

29

Before initialization, the backdoor sleeps for an arbitrary amount
of time using WaitForSingleObjectEx() and waitable timer.

The backdoor monitors for log off events by monitoring for
WM_QUERYENDSESSION messages through a Window
procedure callback that’s created in a separate thread. Figure
32 shows the implemented callback function. If this message is
received, the thread will set the main event object that’s used for
synchronization across the process to a signaled state, causing
the backdoor to run its exit routine. The only noteworthy function
of the exit routine is its ability to persist the backdoor’s current
state (C2 configuration, tasks, and task results) into the registry
value (“Seed”), which houses the backdoor’s configuration
on the victim machine. This retains the latest state of the
backdoor so that it can be re-processed once the machine is
restarted, and the backdoor is re-launched� It is worth noting
that the backdoor also sets its process shutdown parameters
as SHUTDOWN_NORETRY during its initialization phase,
ensuring that it does not become a blocking process during a
log off in order to remain stealthy.

Figure 32. Implemented callback function to monitor log off events

30

Sandworm attribution analysis

To determine the origin and goal of Kapeka, we examined the possible link established between
Kapeka and Sandworm group� Based on publicly available reporting, the closest toolkit
WithSecure found that shared similarities with Kapeka was GreyEnergy. In this section, we will
highlight some of the similarities and lay several propositions to encourage further research.
Information regarding GreyEnergy referenced throughout this section are based on reports from
ESET , Trellix (FireEye) , and Nozomi Networks .

GreyEnergy is a modular backdoor thought to be part of Sandworm’s arsenal, with GreyEnergy
itself being regarded as a likely successor to the BlackEnergy toolkit that the threat group was
initially known for utilizing in their early attacks. At a high-level, GreyEnergy consists of a dropper
component that is responsible for dropping and executing the GreyEnergy backdoor, as well
as setting up the backdoor’s persistence and removing itself from disk. Two versions of the
GreyEnergy toolkit have been identified, the main GreyEnergy backdoor and a lighter version
known as GreyEnergy “mini”�

There are some conceptual overlaps between Kapeka and GreyEnergy, namely:

• Both toolkits consist of a dropper component that has the main backdoor embedded within.
The dropper component is responsible for dropping & setting up the backdoor’s persistence,
then removing itself from disk. However, the GreyEnergy dropper is packed, while the Kapeka
dropper is not�

• The GreyEnergy mini and Kapeka backdoors are DLL files with a masqueraded extension to
make them appear legitimate, with GreyEnergy mini using “�db” and Kapeka using “�wll”� Both
backdoors are also dropped into a folder named “Microsoft” in the file directory with the parent
directory commonly being C:\ProgramData.

• Both backdoor DLLs are exported and called by the first ordinal (#1) via rundll32. This is an
uncommon yet not unique method of exporting DLLs.

• Both droppers look for a legitimate Windows DLL on disk and set the dropped backdoor’s file
time to the same as that DLL. GreyEnergy also modifies the file description of the backdoor,
while Kapeka doesn’t�

• GreyEnergy and Kapeka use a similar custom algorithm to structure data that’s sent to their
C2. Both generate a unique AES-256 key per communication to encrypt the data that’s to
be sent� The AES key is then encrypted via an embedded RSA-2048 key� In each case the
encrypted key and its length as well as the encrypted data and its length are structured in a
similar format, though there are some subtle differences. Kapeka XOR encodes the data and
appends random data, while GreyEnergy encodes the data via base64. Figure 33 shows a
comparison between the two custom structures�

• The GreyEnergy dropper with service DLL persistence looks for an appropriate Windows
service to mimic and names the dropped backdoor DLL with a randomly generated
four-character name followed by either ‘srv’ or ‘svc’. One Kapeka backdoor sample we
found in-the-wild that was bundled with a scheduled task from an infected machine
(97e0e161d673925e42cdf04763e7eaa53035338b) was called ‘wslsrv.dll’. This naming
convention did not follow the algorithm found in the droppers we analyzed. Furthermore, the
scheduled task name was ‘OneDrive’ (instead of Sens Api) and the command line was slightly
different. It is plausible that a different dropper which shares some high-level similarities with
the GreyEnergy dropper may have been used�

• The dropper component in GreyEnergy checks and creates mutex based on the GUID value
fetched via GetCurrentHwProfileA, as does the backdoor component in Kapeka. Utilizing
GetCurrentHwProfileA() to generate a mutex value is not a common technique in other threats
we have observed�

31

• Some configuration components of Kapeka also
match GreyEnergy. Both utilize a configuration
structure that holds a defined maximum alive
time and a pair of fields that hold the high and low
order part of system time. The maximum alive
time defines the maximum number of days with no
successful C2 connection before the backdoors
will remove themselves� The system time pair is
generated & updated at runtime by the backdoor
and used to keep track of the backdoor’s alive
time and last successful C2 poll. This specific
implementation is not a common technique in
other threats we have observed� Moreover, both
backdoors also contain a 16-byte hexadecimal
string that is likely some form of identifier. Figure
34 compares the hexadecimal strings found in
GreyEnergy and Kapeka. Furthermore, figure
35 shows the mentioned similarity between
the configuration components of Kapeka and
GreyEnergy�

• Kapeka utilizes obfuscated names in its
configuration to make analysis more difficult, as
do some versions of GreyEnergy. Figure 36 shows
a comparison of obfuscated field names seen in
GreyEnergy as well as Kapeka’s configuration.

Figure 33. Comparison between GreyEnergy and Kapeka’s C2 custom structure

32

Figure 34. Example of hexadecimal strings found in GreyEnergy and Kapeka samples

33

Figure 35. Similarities between GreyEnergy and Kapeka’s C2 configuration

Figure 36. Example of obfuscated field names found in GreyEnergy and Kapeka’s configuration

While there are similarities between the two, there are also differences such as, but not
limited to:

• The backdoor commands and their implementations are vastly different.

• Kapeka persists its C2 configuration via registry, while GreyEnergy does so via a file on-disk.

• GreyEnergy utilizes WMI to fingerprint the victim, while Kapeka utilizes Windows API and
registry�

• For persistence, GreyEnergy mini utilizes a shortcut file via Startup folder, GreyEnergy utilizes
Windows service via ServiceDLL registry, while Kapeka utilizes either autorun registry or
scheduled task�

Beyond functional similarity between the two toolkits, we examined other indicators relating to
Kapeka, GreyEnergy, and Sandworm�

While we did not observe any post-compromise activity following the detection of Kapeka in
our upstream due to limited telemetry, Kapeka has been reportedly used in destructive attacks
including ransomware campaigns� We correlated publicly reported incidents temporally that
were ransomware-related and attributed to Sandworm group within the same time frame, and
we observed some overlaps with attacks leading to the deployment of Prestige ransomware.

It had been reported that Prestige ransomware was used by Sandworm in destructive attacks
against transportation and logistics companies in Ukraine and Poland in October 2022, with an
increase in precursor activity in September 2022 � The victim organization in which we observed
Kapeka was also a logistics company in Eastern Europe, the backdoor was spotted in late
September 2022, and the other Kapeka samples found in-the-wild were observed in Ukraine.
Separately, the geographical targeting of Prestige ransomware and GreyEnergy overlap as well,
as both were reportedly used in Ukraine and Poland� GreyEnergy has also been observed as a
precursor in destructive attacks�

 9 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha
10 https://www.microsoft.com/en-us/security/blog/2022/10/14/new-prestige-ransomware-impacts-organizations-in-ukraine-and-poland/

11 https://blogs.microsoft.com/on-the-issues/2022/12/03/preparing-russian-cyber-offensive-ukraine/

34

Figure 37 summarizes our findings related to Kapeka,
GreyEnergy, and Prestige ransomware attacks that are all
reportedly linked to Sandworm group� We do not believe
these findings are substantial enough to form a conclusive
assessment or attribution�

However we believe several non-competing hypotheses
can be proposed that lay the foundation for further
research:

• Kapeka is part of Sandworm’s latest arsenal, serving as
a flexible backdoor likely used as part of wider espionage
campaigns to support intelligence collection that can also
lead to sabotage operations at later stages, including
ransomware attacks�

• Kapeka was likely used in intrusions that led to the
deployment of Prestige ransomware in late 2022.

• The toolkit is developed and employed as part of the
ongoing Russia-Ukraine conflict, with targets mostly in
Eastern and Central Europe�

• Kapeka is a successor to GreyEnergy backdoor, as
GreyEnergy is considered a successor to BlackEnergy�
The lowered sophistication observed from BlackEnergy to
GreyEnergy can be witnessed from GreyEnergy to Kapeka
as well� Figure 37. Overlaps between Kapeka, GreyEnergy, Prestige ransomware attacks.

35

Conclusion

Kapeka is a previously unreported backdoor that has been sporadically spotted in Eastern
Europe since at least mid-2022. It is a flexible backdoor with all the necessary functionalities
to serve as an early-stage toolkit for its operators, and also to provide long-term access to the
victim estate�

The backdoor’s victimology, infrequent sightings, and level of stealth and sophistication
indicate APT-level activity, highly likely of Russian origin. However, due to sparsity of data at
the time of writing the infection vector, the threat actor, and the actor’s ‘actions on objectives’
cannot be conclusively stated� Nevertheless, we examined multiple data points that strongly
suggests a link between Kapeka and Sandworm�

Sandworm is a prolific Russian nation-state threat group notorious for their destructive attacks
against Ukraine in pursuit of Russian interests. Based on overlaps in functionality we have
noted between GreyEnergy (a toolkit thought to be part of Sandworm’s arsenal) and Kapeka,
as well as the latest events publicly attributed to Sandworm since the 2022 Russian invasion
of Ukraine, we hypothesize Kapeka is a new addition to Sandworm’s arsenal. It was likely used
in intrusions that led to the deployment of Prestige ransomware in late 2022. It is probable that
Kapeka is a replacement for GreyEnergy, which itself was likely a replacement for BlackEnergy
in Sandworm’s arsenal. Kapeka’s development and deployment likely follows the ongoing
Russia-Ukraine conflict, with Kapeka being likely used in targeted attacks across Central and
Eastern Europe ever since the illegal invasion of Ukraine in 2022.

WithSecure last observed Kapeka in May 2023. It is uncommon for threat groups, especially
nation-state, to cease operations or dispose tooling altogether, particularly before they
are publicly documented. Therefore, Kapeka’s infrequent sightings can be a testament for
its meticulous usage by an advanced persistent actor (APT) in operations that span over
years, such as the Russia-Ukraine conflict. It remains to be seen whether the developers
and operators of Kapeka will evolve with newer versions of the tool or develop and use a new
toolkit with threads of similarity to Kapeka (such as conceptual overlaps or code re-use) like
those found between Kapeka and GreyEnergy, as well as GreyEnergy and BlackEnergy.
Regardless of Kapeka’s origin and objectives, the threat of the backdoor as documented in
this report remains the same�

While the backdoor and its dropper contain capabilities to remove all traces of compromise,
WithSecure has identified several infection artifacts and developed several scripts to aid with
analysis and detection, which can be found in the appendix section of this report.

36

Appendices
MITRE ATT&CK Mapping

Tactic Technique Description

Execution Command and Scripting Interpreter: Windows Command Shell Kapeka uses batch script files and Windows shell commands for various purposes.

Inter-Process Communication: Component Object Model Kapeka uses WinHttp 5.1 COM interface to implement its network communication.

Persistence Scheduled Task/Job: Scheduled Task Kapeka creates a scheduled task called “Sens Api” or “OneDrive” for persistence.

Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder Kapeka creates an autorun registry called “Sens Api” for persistence.

Defense evasion Masquerading: Masquerade File Type Kapeka masquerades its backdoor file as a Microsoft Word Add-In with its extension (.wll), but in reality it is a DLL file

Obfuscated Files or Information Kapeka obfuscates some of its plaintext strings as stackstrings. The embedded backdoor and its configuration are also AES-256 encrypted.

Obfuscated Files or Information: Embedded Payloads The dropper embeds the main backdoor binary in its resource section�

Hide Artifacts: Hidden Files and Directories The dropper drops the main backdoor and removal batch script as hidden files on the victim’s machine.

Indicator Removal: File Deletion The dropper will remove itself upon execution and the main backdoor can remove itself as well.

Indicator Removal: Clear Persistence The backdoor can remove its own persistence�

Modify Registry The backdoor persists its configuration via registry.

System Binary Proxy Execution: Rundll32 Kapeka utilizes rundll32 to execute its main backdoor�

Data Obfuscation: Junk Data Kapeka adds junk data to the data it sends to its C2�

Virtualization/Sandbox Evasion: Time Based Evasion The backdoor sleeps for an arbitrary amount of time using WaitForSingleObjectEx() and waitable timer before initialization.

37

Tactic Technique Description

Discovery System Time Discovery The backdoor keeps track of its last successful connection to its C2 by using system time.

System Owner/User Discovery The backdoor collects information about the user and organization through a set of WinAPI calls and registry queries.

System Information Discovery The backdoor collections various information about the system through a set of WinAPI calls and registry queries.

System Language Discovery The backdoor queries language and country by using GetLocaleInfoW() API call.

Query Registry The backdoor steals information about the victim and the system via registry queries.

Command

and Control

Ingress Tool Transfer The backdoor can receive and execute additional payloads�

Exfiltration Over C2 Channel The backdoor can exfiltrate fingerprinted information as well as local files from the victim’s machine over to its C2.

Encrypted Channel: Asymmetric Cryptography The backdoor uses RSA-2048 encryption as part of its custom algorithm to encrypt data sent to its C2.

Encrypted Channel: Symmetric Cryptography The backdoor uses AES-256 and XOR operations as part of its custom algorithm to encrypt data sent to its C2.

Proxy: Internal Proxy The backdoor detects internet proxy settings via WinHttpGetIEProxyConfigForCurrentUser() and uses them if available.

Scripts

WithSecure has developed several scripts to aid with the analysis and detection of Kapeka, namely:

• A script to decrypt and emulate Kapeka’s network communication. This has been implemented as a custom HTTP handler for
fakenet [https://github.com/mandiant/flare-fakenet-ng].

• A script to extract Kapeka’s configuration from either registry or embedded within the backdoor binary.

• A script to extract and decrypt the backdoor binary from the dropper’s resource section.

These can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka].

38

Detection opportunities

WithSecure Elements

WithSecure™ Elements Endpoint Protection
detects multiple stages of the attack lifecycle.

Our products currently offer the following
detections against the threat:

• Backdoor:W64/Kapeka.*

• Trojan:BAT/Naida.*

• Trojan-Dropper:W32/Klavdia.*

YARA rules

YARA rules can be found in WithSecure Lab’s
GitHub [https://github.com/WithSecureLabs/
iocs/tree/master/Kapeka/].

Indicators of compromise (IOCs)

Indicators of compromise can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka/].

Type Value Note Seen in Seen on

Filename crdss�exe Backdoor dropper file name Ukraine June 2022

Filename %SYSTEM%\win32log.exe Backdoor dropper file name Estonia September 2022

SHA1 80fb042b4a563efe058a71a647ea949148a56c7c Backdoor dropper hash Ukraine June 2022

SHA1 5d9c189160423b2e6a079bec8638b7e187aebd37 Backdoor dropper hash Estonia September 2022

SHA1 6c3441b5a4d3d39e9695d176b0e83a2c55fe5b4e Backdoor hash Estonia September 2022

SHA1 97e0e161d673925e42cdf04763e7eaa53035338b Backdoor hash Ukraine May 2023

SHA1 9bbde40cab30916b42e59208fbcc09affef525c1 Backdoor hash Ukraine June 2022

URL https[:]//103[.]78[.]122[.]94/help/healthcheck Backdoor C2 address - -

URL https[:]//88[.]80[.]148[.]65/news/article Backdoor C2 address - -

URL https[:]//185[.]181[.]229[.]102/home/info Backdoor C2 address - -

URL https[:]//185[.]38[.]150[.]8/star/key Backdoor C2 address - -

Who We Are

WithSecure™, formerly F-Secure Business, is cyber security’s reliable partner.
IT service providers, MSSPs and businesses – along with the largest financial
institutions, manufacturers, and thousands of the world’s most advanced
communications and technology providers – trust us for outcome-based cyber
security that protects and enables their operations. Our AI-driven protection
secures endpoints and cloud collaboration, and our intelligent detection and
response are powered by experts who identify business risks by proactively
hunting for threats and confronting live attacks. Our consultants partner with
enterprises and tech challengers to build resilience through evidence-based
security advice. With more than 30 years of experience in building technology
that meets business objectives, we’ve built our portfolio to grow with our
partners through flexible commercial models.

WithSecure™ Corporation was founded in 1988, and is listed on NASDAQ
OMX Helsinki Ltd.

	Executive summary
	Background
	Dropper analysis
	Backdoor analysis
	Backdoor configuration
	Initial fingerprinting
	Network communication
	Update C2 configuration
	Backdoor tasks
	Uninstall backdoor
	Read file from disk
	Write file to disk
	Launch process or payload
	Execute shell command
	Upgrade backdoor

	Sandworm attribution analysis
	Conclusion
	Appendices
	Scripts

	Detection opportunities
	WithSecure Elements
	YARA rules
	Indicators of compromise (IOCs)

