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Executive summary

• WithSecure has uncovered a novel backdoor that has been used in 
attacks against victims in Eastern Europe since at least mid-2022�

• The malware, which we are calling “Kapeka”, is a flexible backdoor with 
all the necessary functionalities to serve as an early-stage toolkit for its 
operators, and also to provide long-term access to the victim estate�

• The malware’s victimology, infrequent sightings, and level of stealth 
and sophistication indicate APT-level activity�

• WithSecure discovered overlaps between Kapeka, GreyEnergy, and 
Prestige ransomware attacks which are all reportedly linked to a group 
known as Sandworm� WithSecure assesses it is likely that Kapeka is a 
new addition to Sandworm’s arsenal. Sandworm is a prolific Russian 
nation-state threat group operated by the Main Directorate of the 
General Staff of the Armed Forces of the Russian Federation (GRU). 
Sandworm is particularly notorious for its destructive attacks against 
Ukraine in pursuit of Russian interests in the region.

• Kapeka contains a dropper that will drop and launch a backdoor on a 
victim’s machine and then remove itself. The backdoor will first collect 
information and fingerprint both the machine and user before sending 
the details on to the threat actor� This allows tasks to be passed back to 
the machine or the backdoor’s configuration to be updated. WithSecure 
do not have insight as to how the Kapeka backdoor is propagated by 
Sandworm�

• Kapeka’s development and deployment likely follow the ongoing 
Russia-Ukraine conflict, with Kapeka being likely used in targeted 
attacks of firms across Central and Eastern Europe since the illegal 
invasion of Ukraine in 2022. 

• It is likely that Kapeka was used in intrusions that led to the deployment 
of Prestige ransomware in late 2022.

• It is probable that Kapeka is a successor to GreyEnergy, which itself 
was likely a replacement for BlackEnergy in Sandworm’s arsenal.
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Background

In mid-2023 WithSecure found several artifacts observed in an 
intrusion set likely linked to Russian APT activity. One of these 
artifacts was an unknown backdoor/dropper detected in an 
Estonian logistics company in late 2022� 

Upon analysis, we found two additional versions of the 
dropped backdoor submitted to VirusTotal from Ukraine in 
mid-2022 and mid-2023, one of which was packaged with a 
scheduled task file from an infected machine that launched 
the backdoor. We assessed with moderate confidence that the 
submitters were victims�

Based on these sparse data points, several preliminary 
assessments were made:

• No previous variants of the backdoor have been observed or 
publicly reported�

• The backdoor was rarely sighted, hence indicating that it has 
been used in limited scope attacks since at least mid-2022�

• Based upon victimology, the backdoor was likely used in 
campaigns specifically targeting victims in Eastern Europe.

Based on the rarity of the backdoor, its characteristics, and 
sightings in Eastern Europe, we made an initial assessment 
with low confidence that the backdoor, which we have dubbed 
“Kapeka” (‘little stork’ in Russian), is likely a bespoke tool 
used by an advanced persistent actor (APT) possibly of 
Russian origin in targeted attacks in Eastern Europe� This 
was later corroborated by Microsoft, who detect this malware 
as KnuckleTouch , and attribute it to Seashell Blizzard (better 
known as Sandworm). This is in-line with historical and 
current (including post 2022 Russian invasion of Ukraine) 
targeting and activities linked to Sandworm group, who are 
known to support the wider strategic objectives and changing 
intelligence requirements of the Russian state.

While examining the possible link between the backdoor and 
the Sandworm group, WithSecure noted overlaps between 
Kapeka and GreyEnergy, a toolkit thought to be associated 
with the Sandworm group� Additionally, we discovered 
connections between Kapeka, GreyEnergy, and Prestige 
ransomware attacks that occurred in late 2022�

1 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha
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This report provides an in-depth 
technical analysis of the backdoor and its 
capabilities, and analyzes the connection 
between Kapeka and Sandworm 
group. The purpose of this report is to 
raise awareness amongst businesses, 
governments, and the broader security 
community� WithSecure has engaged 
governments and select customers 
with advanced copies of this report. In 
addition to the report, we are releasing 
several artifacts developed as a result of 
our research, including a registry-based 
& hardcoded configuration extractor, 
a script to decrypt and emulate the 
backdoor’s network communication, and 
as might be expected, a list of indicators 
of compromise, YARA rules, and MITRE 
ATT&CK mapping� 

Figure 1. Overview of Kapeka
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Dropper analysis

The Kapeka dropper is a 32-bit Windows executable responsible for 
dropping, executing, and setting up persistence for the backdoor on a 
victim’s machine as well as removing itself from disk. The backdoor binary, 
which is embedded within its resource section, is encrypted via AES-256� 
The dropper’s resource section contains both 32-bit and 64-bit version of 
the backdoor and chooses the appropriate version depending on the victim 
machine’s processor� The dropper utilizes an embedded key to decrypt the 
binary. However, if the embedded key is not set, then it defaults to using the 
command line string as the key for decryption. Figure 2 shows code snippet 
used to extract and decrypt the appropriate backdoor binary from the 
dropper’s resource section�

Depending on the process privileges, the decrypted backdoor binary is 
dropped as a hidden file under a folder called Microsoft in either CSIDL_
COMMON_APPDATA (if admin or SYSTEM) or CSIDL_LOCAL_APPDATA 
(if not). Note: CSIDL_COMMON_APPDATA is typically “C:\ProgramData” 
and CSIDL_LOCAL_APPDATA is typically “C:\Users\<username>\
AppData\Local”. The file name is 5-6 characters long and is randomly 
generated from consonants and vowels (to make it appear like a legitimate 
word) followed by a “.wll” extension. It is worth noting that the dropper looks 
for SensApi.dll (a legitimate Windows DLL) under system directory and 
modifies the file time attributes of the dropped backdoor binary to match the 
legitimate DLL by using SetFileTime().

Figure 2. Code snippet to decrypt backdoor file from dropper’s resource section
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The dropper will then launch the backdoor binary by calling rundll32 and passing 
the backdoor’s first export ordinal (#1) with a “-d” argument. Figure 3 shows an 
example of the command line used to launch the backdoor.

Figure 3. Example of dropper launching the backdoor

Figure 4. Code snippet to add persistence

Depending on the process privileges, the dropper then sets persistence for the 
backdoor either as a scheduled task (if admin or SYSTEM) or autorun registry 
(if not). For the scheduled task, it creates a scheduled task called “Sens Api” via 
schtasks command, which is set to run upon system startup as SYSTEM� To 
establish persistence through the autorun utility, it adds an autorun entry called 
“Sens Api” under HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run 
via the ‘reg add’ command. Both persistence mechanisms are set to launch the 
binary by calling rundll32 and passing the backdoor’s first export ordinal (#1) 
without any additional argument. Figure 4 shows code snippet used to create the 
appropriate persistence mechanism�
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Figure 5. Kapeka execution command from scheduled task seen in-the-wild called “OneDrive” versus “Sens Api” created by the dropper

Figure 6. File content of dropped batch script

WithSecure identified a Kapeka scheduled task file in-the-
wild from an infected machine. The scheduled task was 
called “OneDrive” instead of “Sens Api” that is created by 
the dropper binaries analyzed. Furthermore, the backdoor 
name (wslsrv) in this instance did not follow the same name 
generation method (using consonants and vowels) found 
in the dropper binaries analyzed and the command line to 
launch was slightly different. Figure 5 shows the execution 
command line seen in this instance versus an example from 
a scheduled task created by the dropper�

Lastly, the dropper will drop a hidden batch file into CSIDL_
LOCAL_APPDATA and launch it, which will delete the 
dropper from disk. The file name is 3-4 characters long and is 
generated with the same name generation algorithm used for 
the backdoor. If the user is an administrator, the batch file will 
be set to be removed upon reboot by calling MoveFileExW()
and setting dwFlags as MOVEFILE_DELAY_UNTIL_
REBOOT and lpNewFileName as NULL. Figure 6 shows the 
file content of the dropped batch file.
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Backdoor analysis

The Kapeka backdoor is a Windows DLL containing one 
function which has been exported by ordinal  (rather than by 
name). The backdoor is written in C++ and compiled (linker 
14.16) using Visual Studio 2017 (15.9). The backdoor file 
masquerades as a Microsoft Word Add-In with its extension 
(.wll), but in reality it is a DLL file.

The backdoor is meant to be executed with “-d” argument 
for its initial run, but without it for subsequent runs (which is 
achieved via the persistence method mentioned in earlier 
section “Dropper analysis”). The purpose of this flag is 
explained in subsequent sections.

Like many other backdoors, the backdoor implementation is 
multi-threaded, utilizing event objects  for data synchronization 
and signaling across threads� 

In total, the backdoor launches four main threads: 

• First thread: This is the primary thread which performs the 
initialization and exit routine, as well as C2 polling to receive 
tasks or an updated C2 configuration.

• Second thread: Monitors for Windows log off events, 
signaling the primary thread to perform the backdoor’s 
graceful exit routine upon log off.

• Third thread: Monitors for incoming tasks to be processed. 
This thread launches subsequent threads to execute each 
received task�

• Fourth thread: Monitors for completion of tasks to send back 
the processed task results to the C2�

2 https://learn.microsoft.com/en-us/cpp/build/exporting-functions-from-a-dll-by-ordinal-rather-than-by-name
3 https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects

 https://learn.microsoft.com/en-us/cpp/build/exporting-functions-from-a-dll-by-ordinal-rather-than-by-name  https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects
 https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects
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In terms of data handling, the backdoor utilizes a large principal structure to 
hold all its subsequent data objects and structures, including thread/mutex/
object handles. Furthermore, the backdoor utilizes JSON (implemented using 
‘rapidjson’ library) to hold its data (such as C2 configuration and tasks received) 
internally as well as to send and receive information from its command-and-
control server. In total there are 36 unique JSON keys which span over several 
JSON structures, which have been detailed in later sections. Each JSON key 
is obfuscated and 6-characters long. The obfuscated field names have not 
changed between the samples we have analyzed. Figure 7 shows examples of 
obfuscated JSON field names seen in the backdoor.

For encryption and encoding, the backdoor utilizes three separate methods 
throughout its execution, namely: AES-256 (CBC mode), XOR, and RSA-2048, 
with the RSA public key changing between samples�

Backdoor configuration

The backdoor contains an embedded C2 configuration that is encrypted via 
AES-256. The configuration consists of a 32-byte key followed by an 8-byte 
padding and the encrypted configuration data. The configuration is decrypted 
during the backdoor’s initialization phase� The backdoor also reads any 
existing configuration that’s persisted in registry during its initialization phase. 
Depending on whether the backdoor is launched with the ‘-d’ argument and 
existing configuration in registry, the backdoor chooses which configuration 
to use. If ‘-d’ argument (which indicates first run) is provided, the backdoor will 
favor its embedded configuration, otherwise it will read existing configuration 
from registry, falling back to the embedded configuration if unavailable. Figure 6. File content of dropped batch script
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The backdoor persists its configuration via a registry 
value called “Seed” in “HKU\<SID>\Software\Microsoft\
Cryptography\Providers\<GUID>\”. To generate the 
GUID value, the malware calls GetCurrentHwProfileW() 
and fetches the szHwProfileGuid field. In earlier versions 
of the backdoor, the malware would simply use the 
fetched value as GUID, however in the latest version of 
the backdoor we have analyzed the malware contains 
a custom algorithm implementing CRC32 and PRNG 
(pseudo-random number generator) operations applied to 
the GUID and a hardcoded value in the binary (described 
in a later section as “LSmL1j”) to generate a unique GUID. 
In all versions of the backdoor, the backdoor will default 
to a hardcoded GUID value (“0CA1BE92-FB73-BB74-
5E41-00FDE76B2E8D”) if GetCurrentHwProfileW() 
fails. The backdoor uses the same algorithm to generate 
its mutex as “Global\BFE_Notify_Event_<GUID>”, but 
the fallback value is “{ad584834 - f1b9 - 1587 - 637b - 
1e0025582179}” instead�

The persisted configuration is encrypted via AES-256 with a key consisting of 32-bytes 
of MachineGuid (UTF-16) value from HKLM\SOFTWARE\Microsoft\Cryptography, falling 
back to a hardcoded 32-byte key “Azbi3l1xIgcRzTsOHopgrwUdJUMWpOFt” if the registry 
key query fails. An example has been shown in figure 8.

Figure 8. Example of encrypted configuration persisted in registry value “Seed”
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Both the embedded and persisted configuration are encoded in JSON format. The C2 configuration JSON structure has been 
described in figure 9. An example of the C2 configuration is shown in figure 10.

JSON Key Value type Value

GafpPS Nested object Holds the C2 configuration components mentioned below.

LsHsAO Array C2 Server URLs (required). This is the only mandatory field for the backdoor’s 
embedded configuration.

hM4cDc Integer C2 polling interval (minutes) – The actual polling interval is randomized each time 
between the specified amount and next minute. If not present, the default amount is 
10 minutes�

nLMNzt Integer Maximum alive time (days) – The maximum number of days the backdoor will 
try connecting to the C2 since its initialization or last successful C2 poll before 
uninstalling itself. If not present, the default amount is 3 days.

rggw8m Nested object Holds the system time structure  objects mentioned below� The values are generated 
& updated at runtime by the backdoor using GetSystemTimeAsFileTime(). This 
essentially keeps track of the backdoor’s alive time and last successful C2 poll. This is 
included in the persisted configuration in registry.

bhpaLg Integer System time (Low-order part)

sEXtXs Integer System time (High-order part)

Figure 9. C2 configuration JSON structure

Figure 10. Example of C2 configuration

4 https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime

https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime
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Initial fingerprinting

During its initialization phase, the backdoor collects information about 
the victim’s machine and user through a set of WinAPI calls and registry 
queries. This information is stored internally within a defined structure, 
which is later converted into a JSON format. The backdoor forwards this 
JSON blob in its first and subsequent communication with the threat actor’s 
command-and-control server�

Figure 12 shows a complete list of information gathered from the victim’s 
machine, collection method, and JSON key mapping. An example of JSON 
holding fingerprinted information is shown in figure 11.

JSON Key Value type Value

KBXZSb Username GetUserNameW() 

Overwritten by NetUserGetInfo() -> USER_INFO_1. usri1_name

Cwiq4j User privileges NetUserGetInfo() -> USER_INFO_1.usri1_priv 

KKGCUr Token elevation type GetTokenInformation() -> TokenElevationType 

arqSO1 Computer name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_computername

pHsy0J Domain name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_langroup

ozYekP OS Major Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_major

8ORGRb OS Minor Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_minor

b0HqGu ProductName HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName

xsRMVc Processor Architecture GetNativeSystemInfo() -> SYSTEM_INFO. wProcessorArchitecture

q200c6 CSDVersion HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CSDVersion

RAJ5MJ ProductId HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductId

7N4QJp RegisteredOwner HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\RegisteredOwner

tczMsk RegisteredOrganization HKLM\SOFTWARE\Microsoft\Windows  

NT\CurrentVersion\RegisteredOrganization

GQKkuo UnknownFlag GetVersionExW(&OSVERSIONINFOEXW)  

This flag is set as 1 if the API call is successful. The exact reason is unknown, but it is likely an OS check.

Wqk8xK Windows Server 2003 R2  

Build Number

GetSystemMetrics(89) -> SM_SERVERR2 

This can serve as a check whether the OS is Windows Server 2003 R2.

eEM2N9 System Locale - Language GetLocaleInfoW() -> LOCALE_SISO3166CTRYNAME 

NPvllV System Locale - Country GetLocaleInfoW() -> LOCALE_SISO639LANGNAME 
Figure 11. Example 
of JSON holding 
collected information

Figure 12. Information collected, method, and JSON mapping.
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Network communication

The backdoor uses WinHttp 5.1 COM interface (winhttpcom.
dll) to implement its network communication component. 
The backdoor communicates with its C2 to poll for tasks and 
to send back fingerprinted information and task results. The 
backdoor utilizes JSON to send and receive information from 
its C2� 

Two separate threads are responsible for network 
communication, one to send fingerprinted information and poll 
for tasks, and another to send completed tasks results back to 
the C2. Both threads implement the same request/response 
handler. The request JSON structure has been described in 
figure 13. An example of C2 request JSON is shown figure 14.

JSON Key Value type Value

jxs2HZ Integer Integer value distinguishing between the C2 poller (value 0) and response handler 
(value 1) thread. 

LSmL1j String 16-byte hexadecimal string that’s hardcoded inside the binary. The exact purpose of 
this string is unknown. However, it is most likely a form of campaign/build identifier. 
For instance, to distinguish between private RSA keys to use for decryption.

SIsKba Nested object This holds the fingerprinted information that has been mentioned in section “Initial 
fingerprinting”.

jRcZrx Nested object This holds the output for each of the executed backdoor tasks. This is only populated 
when task results are available to be sent to the C2. This structure is described further 
in section “Backdoor tasks”�

Figure 13. C2 request JSON structure Figure 14. Example of C2 request JSON
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The backdoor uses a custom structure to format the data (figure 13) it sends to its C2. Figure 15 shows an annotated example of the C2 request structure. 

The custom structure is generated via the following steps:

• Generate a random 32-byte AES key that’s used to encrypt the JSON data to be sent.

• Encrypt the JSON data using the randomly generated AES key.

• Store encrypted data size formatted using htonl()

• Encrypt the 32-byte AES key with the RSA-2048 public key that’s embedded in the binary�

• Store encrypted key size formatted using htonl()

• Generate an arbitrary amount of random data.

• Arrange the data as:   
<SIZEOFENCRYPTEDKEY><ENCRYPTEDKEY><SIZEOFENCRYPTEDJSONDATA><ENCRYPTEDJSONDATA><APPENDEDRANDOMDATA>

• Generate a 4-byte XOR key.

• XOR the data structure using the generated XOR key.

• Prepend the XOR key to the data structure.

• Send the final data structure to the C2.
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Figure 15. Example of annotated C2 request structure



17

The backdoor will re-use the same randomly generated 
32-byte AES key to decrypt the response it receives� The 
backdoor can receive two types of responses, one to update 
its configuration and another to execute tasks, both of which 
have been described in later sections�

Moreover, the backdoor checks for internet proxy settings 
using WinHttpGetIEProxyConfigForCurrentUser() during its 
initialization phase and C2 polling. If a proxy setting exists, 
the backdoor will use the specified proxy server for its C2 
communication. This functionality was only observed in the 
latest version of the backdoor analyzed.

Lastly, while the backdoor makes use of WinHttp 5.1 COM 
interface, we identified unused code snippets implementing 
XML HTTP 6.0 COM interface. Figure 16 shows a list of COM 
interfaces implemented by the backdoor, including XML HTTP 
6�0 as well as WinHttp 5�1� Figure 16. COM interfaces implemented in backdoor, highlighting WinHttp 5.1 COM interface.

Update C2 configuration

The backdoor can update its C2 configuration by receiving a 
new configuration as a JSON response (with key “GafpPS”) 
from its command-and-control server during polling. If the 
received configuration differs from the existing configuration, 
the backdoor will update its configuration on-the-fly as well 
as persist the latest C2 configuration by updating the registry 
value (“Seed”) that holds its configuration.

Backdoor tasks

The backdoor can execute tasks on the victim’s machine 
by receiving a list of tasks as a JSON response (with key 
“Td7opP”) from its command-and-control server during 
polling, spawning a separate thread to execute each task�
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JSON Key Value type Value

Td7opP Array This holds a list of backdoor tasks to be executed on the victim’s machine. 
Each task holds the key/value pairs mentioned below.

CwbJ4E Integer Command ID to execute (zero-based number). See figure 19 for full list of 
supported command IDs�

XVXLNm String First argument   
Used mainly for file name/command line to read, write, launch.

INlB5x Nested 
object

Second argument  
Used for payload purposes, such as upgrading backdoor or writing a file 
to disk. This holds a key/value pair with the key being the filename and the 
value being the file content that’s base64-encoded.

J8yWIG String Identifier string that can be passed to distinguish between executed 
commands, this is logged in the output sent back to the command-and-
control as “3qY9vY”.

Figure 17. C2 response JSON structure Figure 18. Example of C2 response JSON with received tasks

Figure 17 shows the C2 response JSON structure that houses the tasks and data associated to each task. 
An example of C2 response JSON with received tasks is shown in figure 18.
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The backdoor supports all basic functionalities that allow it to operate as a flexible backdoor in 
the victim’s estate. Figure 19 shows the list of commands supported by the backdoor.

Once the tasks are completed, the results are sent back to the command-and-control server in 
JSON format (under key “jRcZrx”). Figure 20 shows the JSON structure that houses the task 
results sent back to the command-and-control server. An example of C2 response containing 
task results is shown in figure 21.

Command ID Command Required parameters

0 NotImplemented -

1 Uninstall backdoor -

2 Read file from disk XVXLNm – File path to read

3 Write to file on disk XVXLNm – File path to write  
INlB5x – File content to write

4 Launch process or 
payload

XVXLNm – Command line to process & launch 
 
INlB5x (optional) – Custom payload

5 Execute shell 
command

XVXLNm – Shell command to launch

6 Upgrade backdoor  -

Other Return “unknown\n” -

JSON Key Value type Value

jRcZrx Array This holds a list of results for executed tasks. Each 
result holds the key/value pairs mentioned below.

3qY9vY String Identifier string that was passed in the command input 
as “J8yWIG”

36d6Mo String Logged message during task execution

RzYnkr Nested object This holds a key/value pair that’s used during read file 
task, with the key being the filename and the value being 
the file content that’s base64-encoded.

Figure 19. Supported commands

Figure 20. Completed task results JSON structure
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Figure 21. Example of C2 response containing task results

Figure 22. Example of C2 response to uninstall the backdoor

Uninstall backdoor

This functionality removes all backdoor artifacts from the 
victim’s machine by launching several shell commands 
combined via ampersands through the functionality “Launch 
process or payload” mentioned in a later section. Figure 22 
shows an example of C2 response to uninstall the backdoor.
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The set of commands include:

• Sleeping for 10 seconds via ping command, allowing 
adequate time for the process to terminate before file 
deletion�

• Deleting persistence set by the dropper by issuing 
‘schtasks delete’ or ‘reg delete’ command depending 
on process elevation� All analyzed backdoor samples 
deleted the same scheduled task/registry value called 
“Sens Api”� 

• Deleting the backdoor executable via erase command 
with /f /q and /a:h flags. 
 

The task thread will then set the main event object that’s 
used for synchronization across the process to a signaled 
state, which causes the backdoor to run its graceful exit 
routine. However, before doing so it sets a global flag 
that causes the exit routine to delete the registry key that 
persists the backdoor’s configuration on the victim’s 
machine. Figure 23 shows the usage of SHDeleteKeyW() 
by Kapeka to delete its persisted configuration.

Figure 23. Kapeka removing its persisted configuration
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Read file from disk

This functionality reads any file that’s below 50 MB from disk and sends the output 
back to the C2, essentially enabling data collection from the victim’s machine. The 
file to be read is specified under the first argument (“XVXLNm”). Figure 24 shows 
an example of C2 response to read a file from the victim’s machine.

Figure 24. Example of C2 response to read from file

Figure 25. Example of C2 response to write to file
If the operation succeeds, it logs a success message “<filename> OK\n” and 
sends back the file content as key/value pair underneath a key called “RzYnkr”, 
with the key being the filename, and value being the base64-encoded file content.

In case of an error, the error message is fetched via GetLastError() and logged in an error message 
“ERROR <LastError>”. If the file size is above 50 MB, the file size is logged in an error message as 
“ERROR: File too large. [<size> > 50 MB]”.

Write file to disk

This functionality writes any file content passed (under the second argument, “INlB5x”) into the desired file 
path (under the first argument, “XVXLNm”) on the victim’s machine. Figure 25 shows an example of C2 
response to write a file onto the victim’s machine.
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The threat actor can pass “-f” parameter alongside the file path 
in the first argument to forcefully create the respective file path, 
for instance, if the file directory does not already exist.

If the file path does already exist, the malware negates the 
READ_ONLY file attribute of the file before writing the file 
content to ensure a successful file operation. If the file write 
operation is successful, then a success message is logged as 
“<filename> OK \n” otherwise an error message is logged as 
“<filename> FAIL\n”. If the passed content is empty, then an 
error message “<filename> EMPTY\n” is returned.

Launch process or payload

This functionality launches a new process as a specified 
command line (under the first argument, “XVXLNm”), 
essentially allowing any arbitrary executable on disk to be 
executed. The first argument is parsed as command line 
arguments (white-space delimited tokens) to extract the 
executable file to be launched and any arguments passed. 

Additionally, the first argument can contain multiple additional parameters that alters the backdoor’s behavior, namely:

• Waiting for the child process in 100 millisecond intervals. This is specified via “-w” argument and it can take a parameter to 
specify the number of minutes to wait. For instance, “-w=1” would cause the backdoor process to wait for 1 minute, unless the 
launched child process exits sooner�

• Log output and error messages from launched child process (and all its subsequent subprocesses). This is specified via “-o” 
argument� To achieve this, the standard input, error, and output are redirected via anonymous pipes�

• File path to write custom payload into. This is specified via “-f” and its functionality is explained further below.

• An unused parameter “-bc”. The functionality of this parameter is unknown. 

These additional parameters are not passed into the child process command line that’s launched. Figure 26 shows an example of 
C2 response to launch a process�

Figure 26. Example of C2 response to launch process
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This functionality also supports execution of custom payloads. To do so, the payload must be 
passed through the second argument (“INlB5x“). 

The backdoor will write the payload to disk before execution and there are two ways the 
backdoor will determine the file path to write the payload into:

• If “-f” parameter was specified in the first argument, it will parse the specified file path 
passed (white-delimited parameter following -f).

• If “-f” parameter was not specified and/or file path was not provided, then it will generate a 
temporary file name with a “00” prefix (via GetTempFileNameW()) under temporary folder 
(via GetTempPathW()).

This functionality essentially makes the backdoor modular by allowing additional modules to 
be dropped and executed. Figure 27 shows an example of C2 response to launch a custom 
payload on the victim’s machine�

This functionality also supports execution of custom payloads. To do so, the payload must be 
passed through the second argument (“INlB5x“). 

The backdoor will write the payload to disk before execution and there are two ways the 
backdoor will determine the file path to write the payload into:

• If “-f” parameter was specified in the first argument, it will parse the specified file path passed 
(white-delimited parameter following -f).

• If “-f” parameter was not specified and/or file path was not provided, then it will generate a 
temporary file name with a “00” prefix (via GetTempFileNameW()) under temporary folder (via 
GetTempPathW()).

This functionality essentially makes the backdoor modular by allowing additional modules to be 
dropped and executed. Figure 27 shows an example of C2 response to launch a custom payload 
on the victim’s machine�

To launch the process, the backdoor will combine the specified executable file and list of 
arguments into a string and call CreateProcessW() passing the string as a command line. If the 
process was launched successfully, then a success message is logged as “PID : <PID>\n”. If the 
wait flag was set, the backdoor will wait for the specified amount of time or until the child process 
exits. If the output flag was set, it will log the output/error received from the child process(es) as 
“----------------\n<OUTPUT/ERROR>”.

If the time out is reached and the child process is still running, it will forcefully terminate the child 
process and all its subsequent child processes and log “\n----------------\nTerminateProcess\n”, 
otherwise if the child process had already exited, it will log the exit code as “\n----------------\
nExitCode : <exitcode>\n”.

Figure 27. Example of C2 response to launch custom payload
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Additionally, there are five error messages that the backdoor will log 
within this functionality, namely:

• If the payload can’t be written to disk, it will log “1: <filename> <LastError>\n”

• If the standard output pipe can’t be created, it will log “2: 0“

• If the standard input pipe can’t be created, it will log “3: 0“

• If the standard error pipe can’t be created, it will log “4: 0“

• If process creation fails, it will log “5: 0“. 

Execute shell command

This functionality executes any shell command specified under the first 
argument (“XVXLNm”) by using the functionality “Launch process or payload” 
mentioned in an earlier section and passing “-w” and “-o” parameters to wait 
and log the received process output. Figure 28 shows an example of C2 
response to execute a shell command on the victim’s machine�

Upgrade backdoor

This functionality allows the backdoor to upgrade itself by passing a newer 
version under the second argument (“INlB5x”). Figure 29 shows an example of 
C2 response to upgrade the backdoor�

Figure 28. Example of C2 response to execute shell command

Figure 29. Example of C2 response to upgrade backdoor
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The backdoor will rename the existing backdoor binary by adding 
“.old” extension using MoveFileExW() function. It will drop the new 
backdoor binary on disk using the existing backdoor’s file path. It 
will then re-use the file attributes and file time attributes of the old 
backdoor on the newly created backdoor binary�

It will then launch the new backdoor binary in the same fashion 
as the dropper would, that is by calling rundll32 and passing the 
backdoor’s first export ordinal (#1) with a “-d” argument, essentially 
launching the upgraded binary with the initial run flag.

If the backdoor binary is launched successfully, it will log a success 
message “PID : <NewProcessId>\n”.

Otherwise, there are three error messages that the backdoor 
can log, namely:

• If the second argument is empty (i.e. no file content passed), it will 
log “1\n”.

• If the old backdoor binary could not be moved, it will log “2: 
<LastError>\n”

• If the new binary could not be created, it will log “3: <LastError>\n”

The task thread will then set the main event object that’s used for 
synchronization across the process to a signaled state in a similar 
fashion explained under section “Uninstall backdoor”. 

It is worth noting that this functionality was only observed in the latest 
version of the analyzed backdoor. This version also spawns a thread 
upon launch to delete the old version of the backdoor (with the .old 
extension), given that “-d” argument was passed into it (which is 
typically the case during the backdoor’s first execution). To achieve 
this, the backdoor tries several methods, firstly removing the file’s 
READ_ONLY attribute (if this attribute exists). It then attempts to 
delete the file using DeleteFileW and if that fails, it retries 45 more 
times within a loop that contains a 1 second sleep between retries� 
As a final resort, the file will be set to be removed upon reboot by 
calling MoveFileExW()and setting dwFlags as MOVEFILE_DELAY_
UNTIL_REBOOT and lpNewFileName as NULL, a method seen 
in the Kapeka dropper as well (described in section “Dropper 
analysis”). Figure 30 shows code snippet of file deletion method used 
by the backdoor to remove older version of itself.
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This functionality could potentially allow the threat actor to 
first infect victims with a skeleton version of the backdoor 
in order to fingerprint them and only drop a more complete 
version of the backdoor if the victim is deemed an 
appropriate target�

Figure 30. Code snippet used to remove old backdoor
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Other behavior

The dropper and the backdoor implement stackstrings to obfuscate some of the strings used in the malware. 
Figure 31 shows examples of stackstrings seen in the backdoor.

Figure 31. Stackstrings in the backdoor

5 https://learn.microsoft.com/en-us/windows/win32/shutdown/logging-off
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Before initialization, the backdoor sleeps for an arbitrary amount 
of time using WaitForSingleObjectEx() and waitable timer.

The backdoor monitors for log off  events by monitoring for 
WM_QUERYENDSESSION messages through a Window 
procedure callback that’s created in a separate thread. Figure 
32 shows the implemented callback function. If this message is 
received, the thread will set the main event object that’s used for 
synchronization across the process to a signaled state, causing 
the backdoor to run its exit routine. The only noteworthy function 
of the exit routine is its ability to persist the backdoor’s current 
state (C2 configuration, tasks, and task results) into the registry 
value (“Seed”), which houses the backdoor’s configuration 
on the victim machine. This retains the latest state of the 
backdoor so that it can be re-processed once the machine is 
restarted, and the backdoor is re-launched�  It is worth noting 
that the backdoor also sets its process shutdown parameters 
as SHUTDOWN_NORETRY during its initialization phase, 
ensuring that it does not become a blocking process during a 
log off in order to remain stealthy.

Figure 32. Implemented callback function to monitor log off events
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Sandworm attribution analysis

To determine the origin and goal of Kapeka, we examined the possible link established between 
Kapeka and Sandworm group� Based on publicly available reporting, the closest toolkit 
WithSecure found that shared similarities with Kapeka was GreyEnergy. In this section, we will 
highlight some of the similarities and lay several propositions to encourage further research. 
Information regarding GreyEnergy referenced throughout this section are based on reports from 
ESET , Trellix (FireEye) , and Nozomi Networks .

GreyEnergy is a modular backdoor thought to be part of Sandworm’s arsenal, with GreyEnergy 
itself being regarded as a likely successor to the BlackEnergy toolkit that the threat group was 
initially known for utilizing in their early attacks. At a high-level, GreyEnergy consists of a dropper 
component that is responsible for dropping and executing the GreyEnergy backdoor, as well 
as setting up the backdoor’s persistence and removing itself from disk. Two versions of the 
GreyEnergy toolkit have been identified, the main GreyEnergy backdoor and a lighter version 
known as GreyEnergy “mini”�

There are some conceptual overlaps between Kapeka and GreyEnergy, namely:

• Both toolkits consist of a dropper component that has the main backdoor embedded within. 
The dropper component is responsible for dropping & setting up the backdoor’s persistence, 
then removing itself from disk. However, the GreyEnergy dropper is packed, while the Kapeka 
dropper is not�

• The GreyEnergy mini and Kapeka backdoors are DLL files with a masqueraded extension to 
make them appear legitimate, with GreyEnergy mini using “�db” and Kapeka using “�wll”� Both 
backdoors are also dropped into a folder named “Microsoft” in the file directory with the parent 
directory commonly being C:\ProgramData.

• Both backdoor DLLs are exported and called by the first ordinal (#1) via rundll32. This is an 
uncommon yet not unique method of exporting DLLs.

• Both droppers look for a legitimate Windows DLL on disk and set the dropped backdoor’s file 
time to the same as that DLL. GreyEnergy also modifies the file description of the backdoor, 
while Kapeka doesn’t�

• GreyEnergy and Kapeka use a similar custom algorithm to structure data that’s sent to their 
C2. Both generate a unique AES-256 key per communication to encrypt the data that’s to 
be sent� The AES key is then encrypted via an embedded RSA-2048 key� In each case the 
encrypted key and its length as well as the encrypted data and its length are structured in a 
similar format, though there are some subtle differences. Kapeka XOR encodes the data and 
appends random data, while GreyEnergy encodes the data via base64. Figure 33 shows a 
comparison between the two custom structures�

• The GreyEnergy dropper with service DLL persistence looks for an appropriate Windows 
service to mimic and names the dropped backdoor DLL with a randomly generated 
four-character name followed by either ‘srv’ or ‘svc’. One Kapeka backdoor sample we 
found in-the-wild that was bundled with a scheduled task from an infected machine 
(97e0e161d673925e42cdf04763e7eaa53035338b) was called ‘wslsrv.dll’. This naming 
convention did not follow the algorithm found in the droppers we analyzed. Furthermore, the 
scheduled task name was ‘OneDrive’ (instead of Sens Api) and the command line was slightly 
different. It is plausible that a different dropper which shares some high-level similarities with 
the GreyEnergy dropper may have been used� 

• The dropper component in GreyEnergy checks and creates mutex based on the GUID value 
fetched via GetCurrentHwProfileA, as does the backdoor component in Kapeka. Utilizing 
GetCurrentHwProfileA() to generate a mutex value is not a common technique in other threats 
we have observed�
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• Some configuration components of Kapeka also 
match GreyEnergy. Both utilize a configuration 
structure that holds a defined maximum alive 
time and a pair of fields that hold the high and low 
order part of system time. The maximum alive 
time defines the maximum number of days with no 
successful C2 connection before the backdoors 
will remove themselves� The system time pair is 
generated & updated at runtime by the backdoor 
and used to keep track of the backdoor’s alive 
time and last successful C2 poll. This specific 
implementation is not a common technique in 
other threats we have observed� Moreover, both 
backdoors also contain a 16-byte hexadecimal 
string that is likely some form of identifier. Figure 
34 compares the hexadecimal strings found in 
GreyEnergy and Kapeka. Furthermore, figure 
35 shows the mentioned similarity between 
the configuration components of Kapeka and 
GreyEnergy�

• Kapeka utilizes obfuscated names in its 
configuration to make analysis more difficult, as 
do some versions of GreyEnergy. Figure 36 shows 
a comparison of obfuscated field names seen in 
GreyEnergy as well as Kapeka’s configuration.

Figure 33. Comparison between GreyEnergy and Kapeka’s C2 custom structure
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Figure 34. Example of hexadecimal strings found in GreyEnergy and Kapeka samples
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Figure 35. Similarities between GreyEnergy and Kapeka’s C2 configuration

Figure 36. Example of obfuscated field names found in GreyEnergy and Kapeka’s configuration

While there are similarities between the two, there are also differences such as, but not 
limited to:

• The backdoor commands and their implementations are vastly different.

• Kapeka persists its C2 configuration via registry, while GreyEnergy does so via a file on-disk.

• GreyEnergy utilizes WMI to fingerprint the victim, while Kapeka utilizes Windows API and 
registry�

• For persistence, GreyEnergy mini utilizes a shortcut file via Startup folder, GreyEnergy utilizes 
Windows service via ServiceDLL registry, while Kapeka utilizes either autorun registry or 
scheduled task�

Beyond functional similarity between the two toolkits, we examined other indicators relating to 
Kapeka, GreyEnergy, and Sandworm�

While we did not observe any post-compromise activity following the detection of Kapeka in 
our upstream due to limited telemetry, Kapeka has been reportedly  used in destructive attacks 
including ransomware campaigns� We correlated publicly reported incidents temporally that 
were ransomware-related and attributed to Sandworm group within the same time frame, and 
we observed some overlaps with attacks leading to the deployment of Prestige ransomware.

It had been reported  that Prestige ransomware was used by Sandworm in destructive attacks 
against transportation and logistics companies in Ukraine and Poland in October 2022, with an 
increase in precursor activity in September 2022 � The victim organization in which we observed 
Kapeka was also a logistics company in Eastern Europe, the backdoor was spotted in late 
September 2022, and the other Kapeka samples found in-the-wild were observed in Ukraine. 
Separately, the geographical targeting of Prestige ransomware and GreyEnergy overlap as well, 
as both were reportedly used in Ukraine and Poland� GreyEnergy has also been observed as a 
precursor in destructive attacks�

 9 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha
10  https://www.microsoft.com/en-us/security/blog/2022/10/14/new-prestige-ransomware-impacts-organizations-in-ukraine-and-poland/

11  https://blogs.microsoft.com/on-the-issues/2022/12/03/preparing-russian-cyber-offensive-ukraine/
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Figure 37 summarizes our findings related to Kapeka, 
GreyEnergy, and Prestige ransomware attacks that are all 
reportedly linked to Sandworm group� We do not believe 
these findings are substantial enough to form a conclusive 
assessment or attribution� 

However we believe several non-competing hypotheses 
can be proposed that lay the foundation for further 
research:

• Kapeka is part of Sandworm’s latest arsenal, serving as 
a flexible backdoor likely used as part of wider espionage 
campaigns to support intelligence collection that can also 
lead to sabotage operations at later stages, including 
ransomware attacks�

• Kapeka was likely used in intrusions that led to the 
deployment of Prestige ransomware in late 2022.

• The toolkit is developed and employed as part of the 
ongoing Russia-Ukraine conflict, with targets mostly in 
Eastern and Central Europe�

• Kapeka is a successor to GreyEnergy backdoor, as 
GreyEnergy is considered a successor to BlackEnergy� 
The lowered sophistication observed from BlackEnergy to 
GreyEnergy can be witnessed from GreyEnergy to Kapeka 
as well� Figure 37. Overlaps between Kapeka, GreyEnergy, Prestige ransomware attacks.
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Conclusion

Kapeka is a previously unreported backdoor that has been sporadically spotted in Eastern 
Europe since at least mid-2022. It is a flexible backdoor with all the necessary functionalities 
to serve as an early-stage toolkit for its operators, and also to provide long-term access to the 
victim estate� 

The backdoor’s victimology, infrequent sightings, and level of stealth and sophistication 
indicate APT-level activity, highly likely of Russian origin. However, due to sparsity of data at 
the time of writing the infection vector, the threat actor, and the actor’s ‘actions on objectives’ 
cannot be conclusively stated� Nevertheless, we examined multiple data points that strongly 
suggests a link between Kapeka and Sandworm�

Sandworm is a prolific Russian nation-state threat group notorious for their destructive attacks 
against Ukraine in pursuit of Russian interests. Based on overlaps in functionality we have 
noted between GreyEnergy (a toolkit thought to be part of Sandworm’s arsenal) and Kapeka, 
as well as the latest events publicly attributed to Sandworm since the 2022 Russian invasion 
of Ukraine, we hypothesize Kapeka is a new addition to Sandworm’s arsenal. It was likely used 
in intrusions that led to the deployment of Prestige ransomware in late 2022. It is probable that 
Kapeka is a replacement for GreyEnergy, which itself was likely a replacement for BlackEnergy 
in Sandworm’s arsenal. Kapeka’s development and deployment likely follows the ongoing 
Russia-Ukraine conflict, with Kapeka being likely used in targeted attacks across Central and 
Eastern Europe ever since the illegal invasion of Ukraine in 2022. 

WithSecure last observed Kapeka in May 2023. It is uncommon for threat groups, especially 
nation-state, to cease operations or dispose tooling altogether, particularly before they 
are publicly documented. Therefore, Kapeka’s infrequent sightings can be a testament for 
its meticulous usage by an advanced persistent actor (APT) in operations that span over 
years, such as the Russia-Ukraine conflict. It remains to be seen whether the developers 
and operators of Kapeka will evolve with newer versions of the tool or develop and use a new 
toolkit with threads of similarity to Kapeka (such as conceptual overlaps or code re-use) like 
those found between Kapeka and GreyEnergy, as well as GreyEnergy and BlackEnergy. 
Regardless of Kapeka’s origin and objectives, the threat of the backdoor as documented in 
this report remains the same�

While the backdoor and its dropper contain capabilities to remove all traces of compromise, 
WithSecure has identified several infection artifacts and developed several scripts to aid with 
analysis and detection, which can be found in the appendix section of this report.
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Appendices
MITRE ATT&CK Mapping

Tactic Technique Description

Execution Command and Scripting Interpreter: Windows Command Shell Kapeka uses batch script files and Windows shell commands for various purposes.

Inter-Process Communication: Component Object Model Kapeka uses WinHttp 5.1 COM interface to implement its network communication.

Persistence Scheduled Task/Job: Scheduled Task Kapeka creates a scheduled task called “Sens Api” or “OneDrive” for persistence.

Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder Kapeka creates an autorun registry called “Sens Api” for persistence.

Defense evasion Masquerading: Masquerade File Type Kapeka masquerades its backdoor file as a Microsoft Word Add-In with its extension (.wll), but in reality it is a DLL file

Obfuscated Files or Information Kapeka obfuscates some of its plaintext strings as stackstrings. The embedded backdoor and its configuration are also AES-256 encrypted.

Obfuscated Files or Information: Embedded Payloads The dropper embeds the main backdoor binary in its resource section�

Hide Artifacts: Hidden Files and Directories The dropper drops the main backdoor and removal batch script as hidden files on the victim’s machine.

Indicator Removal: File Deletion The dropper will remove itself upon execution and the main backdoor can remove itself as well.

Indicator Removal: Clear Persistence The backdoor can remove its own persistence�

Modify Registry The backdoor persists its configuration via registry.

System Binary Proxy Execution: Rundll32 Kapeka utilizes rundll32 to execute its main backdoor�

Data Obfuscation: Junk Data Kapeka adds junk data to the data it sends to its C2�

Virtualization/Sandbox Evasion: Time Based Evasion The backdoor sleeps for an arbitrary amount of time using WaitForSingleObjectEx() and waitable timer before initialization.
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Tactic Technique Description

Discovery System Time Discovery The backdoor keeps track of its last successful connection to its C2 by using system time.

System Owner/User Discovery The backdoor collects information about the user and organization through a set of WinAPI calls and registry queries.

System Information Discovery The backdoor collections various information about the system through a set of WinAPI calls and registry queries.

System Language Discovery The backdoor queries language and country by using GetLocaleInfoW() API call. 

Query Registry The backdoor steals information about the victim and the system via registry queries.

Command  

and Control

Ingress Tool Transfer The backdoor can receive and execute additional payloads�

Exfiltration Over C2 Channel The backdoor can exfiltrate fingerprinted information as well as local files from the victim’s machine over to its C2.

Encrypted Channel: Asymmetric Cryptography The backdoor uses RSA-2048 encryption as part of its custom algorithm to encrypt data sent to its C2.

Encrypted Channel: Symmetric Cryptography The backdoor uses AES-256 and XOR operations as part of its custom algorithm to encrypt data sent to its C2.

Proxy: Internal Proxy The backdoor detects internet proxy settings via WinHttpGetIEProxyConfigForCurrentUser() and uses them if available.

Scripts

WithSecure has developed several scripts to aid with the analysis and detection of Kapeka, namely:

• A script to decrypt and emulate Kapeka’s network communication. This has been implemented as a custom HTTP handler for 
fakenet [https://github.com/mandiant/flare-fakenet-ng].

• A script to extract Kapeka’s configuration from either registry or embedded within the backdoor binary.

• A script to extract and decrypt the backdoor binary from the dropper’s resource section.

These can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka].
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Detection opportunities

WithSecure Elements

WithSecure™ Elements Endpoint Protection 
detects multiple stages of the attack lifecycle. 

Our products currently offer the following 
detections against the threat:

• Backdoor:W64/Kapeka.*

• Trojan:BAT/Naida.*

• Trojan-Dropper:W32/Klavdia.*

YARA rules

YARA rules can be found in WithSecure Lab’s 
GitHub [https://github.com/WithSecureLabs/
iocs/tree/master/Kapeka/].

Indicators of compromise (IOCs)

Indicators of compromise can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka/].

Type Value Note Seen in Seen on

Filename crdss�exe Backdoor dropper file name Ukraine June 2022

Filename %SYSTEM%\win32log.exe Backdoor dropper file name Estonia September 2022

SHA1 80fb042b4a563efe058a71a647ea949148a56c7c Backdoor dropper hash Ukraine June 2022

SHA1 5d9c189160423b2e6a079bec8638b7e187aebd37 Backdoor dropper hash Estonia September 2022

SHA1 6c3441b5a4d3d39e9695d176b0e83a2c55fe5b4e Backdoor hash Estonia September 2022

SHA1 97e0e161d673925e42cdf04763e7eaa53035338b Backdoor hash Ukraine May 2023

SHA1 9bbde40cab30916b42e59208fbcc09affef525c1 Backdoor hash Ukraine June 2022

URL https[:]//103[.]78[.]122[.]94/help/healthcheck Backdoor C2 address - -

URL https[:]//88[.]80[.]148[.]65/news/article Backdoor C2 address - -

URL https[:]//185[.]181[.]229[.]102/home/info Backdoor C2 address - -

URL https[:]//185[.]38[.]150[.]8/star/key Backdoor C2 address - -
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