

Nils Rafael Dominguez Vega

PinPadPwn

Black Hat 2012

25th July 2012

Introduction Chip&Pin Practical EMV Testing Case Studies (Demos) Conclusion

Introduction

- Rafa:
 - Security Consultant for 6 years
 - USB research
 - Smart-card research
- Nils:
 - Head of Research @ MWR
 - PWN2OWN Winner 2009/2010
 - Android research

LABS Why Research Payment Terminals?

- There wasn't as much money in Android Exploits as we thought ⁽²⁾
- Widely used
- Payment Information Entry Point
- Payment authorisation
 - From Merchant Perspective
- More and more powerful Larger attack surface
- Single Point of Failure
 - For Merchants
 - And Card Holders

- Terminal Skimming
 - Modifying the Hardware
- Replacing Terminals
- Manipulated Applications
 - Rogue Developers/Engineers
- "Understanding Terminal Manipulation at the Point of Sale" - MasterCard

Need someone who can modify a VeriFone vx670 wireless pin pad, so that it will record track1, track2 and PIN # for debit, cc transactions. Need to print out receipt and need to have a menu for Debit and Credit. If card with chip is entered, it should say "error please swipe card".

This will be a dummy machine, if you know what that means. In order to do this software modification I believe it is necessary to have access to the Verix Developer Toolkit.

Please have a look at the attached notepad file for some more details with regards to this project.

- Payment Terminals are small computers
 - Payment Applications
 - Same Vulnerabilities as in other Software
- Attack Surface
 - Magnetic Stripe
 - Chip&Pin
 - Communication
 - Serial
 - JTAG
 - Setup Menu

LABS Research Approach

- Goal
 - Find and Exploit Software Vulnerabilities
- Complete Black-Box perspective
- Only using publicly available information
- Buying from eBay and "other providers"
- Using second hand terminal from retailers
 - Payment applications installed
 - Terminals configured
 - Refunds anyone?

- Dumb Terminal
 - Connected to POS
- Terminals with Payment Application
 - From Vendor
 - Third Parties
 - Vendor modifications
 - Connectivity
 - To Internal systems
 - Third Party Payment Providers

Chip&Pin

- Major improvement over Mag Stripe
- Widely implemented in Europe
- Offline and Online Payments
- Chip allows for better user authentication
 - More static data than Mag Stripe
 - "Signing of Payments"
 - Cryptogram
- PIN replaces signature and ID
- US about to adopt Chip&Pin

- Answer-to-Reset (ATR)
- Communication with APDUs
 - Application Protocol Data Units
- Hosts system sends commands

C-APDU

Smart Card always only responds

R-APDU

LABS Chip&Pin - EMV

- Short for Europay, Mastercard and Visa
- De-Facto Standard for Chip&Pin Payments
 - Also Gift Cards
- Contactless (NFC) Payments use EMV
 - Some older implementation don't
- Defines aspects such as
 - Multiple Card Applications
 - Data Storage (PIN, Expiry Date)
 - PIN Verification
- Useful resource: *www.emvlab.org*

- READ RECORDS command reads EMV records
- TLV data format
 - Error Prone
- Example:

....

```
70 50 -- Record Template (EMV Proprietary)
5f 24 03 -- Application Expiration Date
12 03 31 (NUMERIC)
5f 25 03 -- Application Effective Date
09 02 05 (NUMERIC)
5a 08 -- Application Primary Account Number (PAN)
54 11 11 88 88 88 88 82 (NUMERIC)
```


Practical EMV Testing

LABS MitM Smart-card Sniffing

- Season 2 Board
 - Sat TV hacker toolkit
- Sits between the card and the terminal
- Allow sniffing of data via RS-232
- We got mixed results
- Other Hardware exists
 - Smart Card Detective

LABS Logging/Programmable Smart-card

- Custom Smartcard
 - Log APDUs from Terminal
 - Programmable from our Scripts
 - Sequence of responses
- We used BasicCards
 - JavaCard IDE is impossible to set-up

Case Studies

- 3 Case studies
- 3 Different terminals
- Vulnerabilities currently with vendors
- No vendor names
- Unfortunately
 - No specific vulnerability details

Case Study 1 Payment Terminal 1

LABS Low Tech Memory Dump

	0 704f160a 704f160a	0	0	0	0	and the second
13	0 27 10 35 HEREFEE Mall 70 41 cb to.	a 0	0	0	0	
1 914 a	0 160000 204926 For Tors 3d65	0 0	3037 312	0	0	70100
(p. 70 4 e3 18 0	Q 40 57 40 40 47655 7E	0 0	30 2 00 33	0.	0	to the second
1. 70 - 80 and bf4	0 43 5 c 10/704166 fo molo 41 707 e mil	0 0	31 00 0000	0	0	20453
2: 7041 2780 12 14 0000	0 +1 70 4a 91 275 1627+7- 168,08	0 0	74 010001	6	q	of safe
ind 7042 el 61 \$6 \$7.32 35	0 et35c +470 41eb fo 109 1528	0 ?	0	0	0	dalk
33 32 3830 31	0 1 15 70 45 70 97 9 158	0	0	0	Ð	8739
1) - 4229 of 130 35 35	0 uzoure ff ff th th ff 0	0	0	0	0	ear
1 1 70 463 14 33 5) SI 0	0 178 d'Enner 02 0	0	0	0	õ	605.
450 0 55 0	0 ffff 80 0 f ul (f mil 0	0	0	0	0	
2000080 0	O REC 70 Wood PD 0	0	0	0	0	300
a stabel D	0 44 0 c 70 40 4 50 0	6	0	0	0	or
· 80 Sec	SF2d9FII 12 0 10 10 0	0	0	0	σ	701
704013 000 0730 4 80	bFOC0000 0 0 98. MAS 70.46 holl 0	0	0	0	О	, r
4000 15 68 17 30 00 00	0 2611 6 10 0 0	0	0	0	0	*8
fift fift the o	O SIFF DOGLOGIO O	16	0	0	0	2,
M18370 47 See 6	-04F2F58 0 10 10 0	D	0	0	0	d
EF EF EF O O	70 0 70 486bd3- 0	3	0	8	0	
0 0	000000 0 40410600 0	3	0	0	6	pl.
0000	0 000080 380 70 4baet 0	0	0	0	0	
0	800 80001 6 f0 70 50 cere	0	The second	8	0	

- Dump memory regions through ethernet
- Allowed us to analyse the Application
 - System calls
- And find more weaknesses
 - Hardcoded Passwords
 - Chip&Pin Vulnerabilities

LABS Chip&Pin Vulnerability #1

- Fairly straight forward stack-buffer overflow
- Handling EMV tags
- Allows for arbitrary code execution
- Payload staging
 - ROP to retrieve more data from card
 - Shellcode to retrieve even more data
 - Almost arbitrary
 - 870 bytes final stage

PinPadPwn DEMO #1

- Code execution in context of payment application
- Reported to Vendor
- Printer and Display
- Anything could be done
 - Authorise Payments?
- More later 🙂

Case Study 2 Feature Rich Payment Terminal

- Processor
 - 32 bit ARM
- Operating System
 - Embedded Linux
 - Even BusyBox
- User Interface
 - Touch Screen
 - Full colour display

- Hardware Peripherals
 - Smart-card, SIM Card and Magnetic Card
 - Contactless
 - USB
 - Ethernet
 - RS-232
- Security Features
 - Binary Signing
 - Tamper Protection

- Applications
 - Payment Application
 - Built-in Terminal Application
- Extra Functionality
 - Multimedia Advert Rendering
 - Remote Administrative Interface
 - Internet Access

PinPadPwn DEMO #2

- Full system compromise
- Running of our unsigned application
- Change root password and enable telnet

Case Study 3 Payment Terminal 3

- Same custom OS as in Demo #1
 - That helped!
- Used on multiple devices
- Modified Vendor Application
- Code quality considerably better
- Still vulnerabilities
 - Deeper down the protocol
- Default and Hardcoded Credentials again ...
 - "SuperMega" Password

PinPadPwn DEMO #3

Infecting the device:

Retrieving CC# and PINs:

Code execution in Context of Payment Application

- Reported to Vendor
 - Reported beginning of July
 - Patch exists already (< 3 Weeks)
 - Will take some time to make it to the terminals

- OS Security
 - Privilege Escalation
 - Firmware Updates
 - Signing and Encryption
- Wifi, Bluetooth, Network Stacks
- More advanced Payloads
- Persistence on the Device
 - Some ideas
- NFC

- Too much trust into Payment Terminals
- Default Passwords were not changed
 - Sometimes Hardcoded Passwords
- Much effort into Physical Security Measures
 - Anti-tamper mechanisms
- Software vulnerabilities
 - Handling user controlled input
 - Memory corruption issues
 - Code injection

